Extraction and Biological Application of Silk Sericin: An Over View

A. Sarangi

Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Sriram Chandra Vihar, Takatpur, Baripada, Mayurbhanj 757003, Odisha, India.

S. Baral

Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Sriram Chandra Vihar, Takatpur, Baripada, Mayurbhanj 757003, Odisha, India.

H. N. Thatoi *

Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Sriram Chandra Vihar, Takatpur, Baripada, Mayurbhanj 757003, Odisha, India.

*Author to whom correspondence should be addressed.


Abstract

The sericin is a byproduct which is obtained from silk industries. Mainly Bombyx mori is responsible for the synthesis of sericin. Sericin is proteinaceous in nature and is biodegradable. The two major components of silk i.e., fibroin and sericin have to be removed from raw silk to give it a luster or shine by degumming process. Silk sericin and its nutritive value has now been known to everyone in China and Japan. Many uses of sericin like pharmaceutical uses, textile -based uses, use in cosmetics has now been explored in India but the use of sericin as dietary supplement is not still discovered. Tons of silk has been produced in India and the degummed water goes as waste which can be used. Nanotechnological discoveries of sericin have given foremost advances in the field of biomedicine and tissue engineering, with special consideration the applications of a natural product for the enhancement of new pharmaceutical formulations and biomaterials. Sericin conjugated nano formulation are a vast example of nanotechnological tools applied to the blueprint of an biocompatible, economically viable, and biodegradable compound as well as its use as nanomedicine. The aim of this review is to highlight the application of sericin in different fields like in biomedical, food additives and the nano formulation of silk sericin.

Keywords: B. mori, silk gland, sericin, fibroin, nano formulation


How to Cite

Sarangi , A., Baral , S., & Thatoi , H. N. (2023). Extraction and Biological Application of Silk Sericin: An Over View. Asian Journal of Biology, 17(2), 57–72. https://doi.org/10.9734/ajob/2023/v17i2321

Downloads

Download data is not yet available.

References

Thatikonda N. Functionalization of partial spider silk with affinity domains and its use for diverse applications; 2016.

Gulrajani ML. ed, Silk dyeing, printing, and finishing. Department of Textile Technology, Indian Institute of Technology; 1988.

Iizuka E. Size dependency of the physical properties of Bombyx silk. The Journal of Sericultural Science of Japan. 1996;65(2): 102-108.

Cook JG. Natural fibres of animal origin (Silk). Handbook of textile fibres. 1964;154-165.

Wu JH, Wang Z, Xu SY. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry. 2007;103(4):1255-1262.

Jena K, Pandey J, Kumari R, Sinha AK, Gupta VP, Singh GP. Tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti- oxidant compounds. Int. J. Biol. Macromol. 2018;114:1102-1108.

Genc G, Narin G, Bayraktar O. Spray drying as a method of producing silk sericin powders. J. Achiev. Mater. Manuf. Eng. 2009;37(1):78-86.

Patel RJ, Modasiya MK. Sericin: pharmaceutical applications. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011.2(3):913-917.

Sarovart S, Sudatis B, Meesilpa P, Grady BP, Magaraphan R. The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Rev Adv Mater Sci. 2003;5(3):193-198.

Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnology and Applied Biochemistry. 2010;55(2):91-98.

Wu W, Li W, Wang LQ, Tu K, Sun W. Synthesis and characterization of pH‐ and temperature‐ sensitive silk sericin/ poly (N‐isopropylacrylamide) interpenetrating polymer networks. Polymer International. 2006;55(5):513-519.

Zhang YQ, Tao ML, Shen WD, Zhou YZ, Ding Y, Ma Y, Zhou WL. Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials. 2004;25(17):3751-3759.

Aramwit P, Sangcakul A. The effects of sericin cream on wound healing in rats. Bioscience, Biotechnology, and Biochemistry. 2007;71(10):2473-2477.

Chlapanidas T, Faragò S, Lucconi G, Perteghella S, Galuzzi M, Mantelli M, Avanzini MA, Tosca MC, Marazzi M, Vigo D, Torre, ML. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. International Journal of Biological Macromolecules. 2013;58:47-56.

Kaewkorn W, Limpeanchob N, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biological Research. 2012;45(1):45-50.

Sano M, Tamada Y, Niwa K, Morita T, Yoshino G. Sulfated sericin is a novel anticoagulant influencing the blood coagulation cascade. Journal of Biomaterials Science, Polymer Edition. 2009;20(5-6):773-783.

Padamwar MN, Pawar AP. Silk sericin and its application: a review. J. Sci. Ind. Res. 2004;63: 323-329.

Kundu SC, Dash BC, Dash R, Kaplan DL. Natural protective glue protein, sericin bioengineered by silk worms: Potential for biomedical and biotechnological applications. Progress in Polymer Science. 2008;33 (10): 998-1012.

Nagata S, Nagasawa H. Effects of diet-deprivation and physical stimulation on the feeding behaviour of the larvae of the silk worm, Bombyx mori. Journal of Insect Physiology. 2006;52(1): 807-815.

Ude UA, Eshkoor R, Zulkifili R, Ariffin AK, Dzuraidah AW, Azhari CH. Bombyx mori silk fibre and its composite: A review of contemporary developments. Materials & Amp; Design. 2014; 57(1):298-305.

Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int. J. Mol Sci. 2015;16: 4880–903.

Kirshboim S, Ishay JS. Silk produced by hornets: thermophotovoltaic properties - a review. Comparative Biochemistry and Physiology Part A. 2000;127(1):1- 20.

Reddy T, Roy S, Prakash Y, Somashekarappa H, Ramesh K, Divakara S, Somashekar R. Stress-strain curves and corresponding structural parameters in mulberry and non-mulberry silk fibers. Fibers Polym. 2011;12(4):499–505.

Kundu SC, Kundu B, Talukdar, S, Bano S, Nayak S, Kundu J, Mandal BB, Bhardwaj N, Botlagunta M, Dash BC, Acharya C. Nonmulberry silk biopolymers. Biopolymers. 2012;97(6):455-467.

Das S. Preparation and processing of tussar silk. J. Soc. Dye. Colour. 1992;108 (11):481–486.

Chen F, Porter D, Vollrat F. Morphology and structure of silkworm cocoons. Mater. Sci. Eng. C 2012;32 (4):772–778.

Sen K, Babu KM. Studies on Indian Silk. I. macrocharacterization and analysis of amino acid composition. J. Appl. Polym. Sci. 2004;92 (2):1080–1097.

Peigler RS. Wild silks of the World. Am. Entomol. 1993;39(3):151–162.

Babu KM. Silk fibres–structure, properties and applications. In Handbook of Natural Fibres. Woodhead Publishing. 2020;385-416.

Atav R, Demir A. Silk Fibers Gained From Non-Mulberry Silkworms. Electron. J. Text. Technol. 2009;3 (4):56–64.

Kaur J, Rajkhowa R, Tsuzuki T, Wang X. Crystals in antheraea assamensis silkworm cocoon: their removal, recovery and roles. Mater. Des. 2015;88:236– 244.

Kumar BS, Ramachandran T. ERI silk for functional knitted apparels. In International Conference on Systems, Science, Control, Communication, Engineering and Technology. 2016; 968-972.

Chollakup R, Suesat J, Ujjin S. Effect of blending factors on eri silk and cotton blended yarn and fabric characteristics. In Macromolecular Symposia; John Wiley & Sons, Ltd. 2008;264:44–49.

Devi D, Chetri P, Dass N N. Talukdar B, Sarma N, Sen Baruah K. Study of the structure of degummed antheraea assamensis (Muga) silk fibre. J. Text. Inst. 2011;102 (6):527–533.

Takasu Y, Yamada H, Tsubouchi K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Bioscience, Biotechnology, and Biochemistry. 2002; 66(12):2715-2718.

Mondal M, Trivedy K, Kumar S. The silk proteins, sericin and fibroin in silksilk worm, Bombyx mori Linn, a review. Caspian Journal of Environmental Sciences. 2007;5(2):63-76.

Humenik M, Scheibel T, Smith A. Spider silk: understanding the structure function relationship of a natural fiber. Progress in Molecular Biology and Translational Science. 2011;103(1):131-185.

Vepari C, Kaplan DL. Silk as a biomaterial. Progress in Polymer Science. 2007;32(8-9):991-1007.

Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnology Advances. 2002;20 (2):91-100.

Khan MR, Tsukada M, Gotoh Y, Morikawa H, Freddi G, Shiozaki H. Physical properties and dyeability of silk fibers degummed with citric acid. Bioresource Technology. 2010;101(21): 8439-8445.

Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnology and Applied Biochemistry. 2010;55(2):91-98.

Voegeli R, Meier J, Blust R. Sericin silk protein: unique structure and properties. Cosmetics & Toiletries. 1993;108 (1):101-108.

Shaw JTB, Smith SG. Amino acid of silk sericin. Nature. 1951;168 (4278):745.

Wu JH, Wang Z, Xu SY. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry. 2007;103(4):1255-1262.

Vaithanomsat P, Kitpreechavanich V. Sericin separation from silk degumming wastewater. Separation and Purification Technology. 2008;59 (2):129-133.

Akai H. The ultrastructure and functions of the silk gland cells of Bombyx mori. In Insect ultrastructure. Springer, Boston, MA. 1984;323-364.

Aramwit P, Siritientong T, Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA. 2012;30 (3):217-224.

Sothornvit R, Chollakup R, Suwanruji P. Extracted sericin from silk waste for film formation. Songklanakarin Journal of Science & Technology. 2010;32(1):17-22.

Mahmoodi NM, Arami M, Mazaheri F, Rahimi S. Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production. 2010;18(2):146-151.

Kalita M, Allardyce BJ, Sankaranarayanan K, Devi D, Rajkhowa R. Sericin from mulberry and non-mulberry silk using chemical-free degumming. The Journal of The Textile Institute. 2022; 113(10):2080-2089.

Arami M, Rahimi S, Mivehie L, Mazaheri F, Mahmoodi NM. Degumming of Persian silk with mixed proteolytic enzymes. Journal of Applied Polymer Science. 2007;106(1):267-275.

Dash R, Ghosh SK, Kaplan DL, Kundu SC. Purification and biochemical characterization of a 70-kDa sericin from tropical tasar silksilk worm, Antheraea mylitta. Comparative Biochemistry and Physiology. 2007;147 (1):129-134.

Gulrajani ML, Brahma KP, Kumar PS, Purwar R. Application of silk sericin to polyester fabric. Journal of Applied Polymer Science. 2008;109(1):314-321.

Gupta D, Agrawal A, Chaudhary H, Gulrajani M, Gupta Ch. Cleaner process for extraction of sericin using IR. Journal of Cleaner Production. 2013;52 (1):488-494.

Haggag K, El-Sayed H, Allam OG. Degumming of silk using microwave-assisted treatments. Journal of Natural Fibers. 2007;4(3):1-22.

Capar G, Aygun SS, Gecit MR. Treatment of silk production wastewaters by membrane processes for sericin recovery. Journal of Membrane Science. 2008; 325(2):920-931.

Kurioka A, Kurioka F, Yamazaki M. Characterization of sericin powder prepared from citric acid-degraded sericin polypeptides of the silkworm, Bombyx Mori. Bioscience, Biotechnology, and Biochemistry. 2004;68(4):774-780.

Komatsu K. Recent advances in sericin research. Journal of Sericulture Science of Japan. 1980;69 (1):457-465.

Kalita M, Allardyce BJ, Sankaranarayanan K, Devi D, Rajkhowa R. Sericin from mulberry and non-mulberry silk using chemical-free degumming. The Journal of the Textile Institute. 2022; 113(10):2080-2089.

Khan MMR, Tsukada M, Gotoh Y, Morikawa H, Freddi G, Shiozaki H. Physical properties and dyeability of silk fibers degummed with citric acid. Bioresource Technology. 2010;101(21): 8439-8445.

Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 2020;103:24–51.

Dutta S, Chowdhury T, Ghosh AK. Green synthesis of poly-L-lysinecoated sericin nanoparticles and their molecular size-dependentantibacterial activity. Colloid Surface B. 2020;188:99.

Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015;33:1855–1867.

Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Adaptive effect of sericin on hepatic mitochondrial conformation through its regulation of apoptosis, autophagy and energy maintenance: a proteomics approach. Sci Report. 2018; (8):14943.

Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles- natural product for cancer therapy: a comprehensive review. Int J Polymer Mat Polymer Biomat; 2020.

Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci. 2015; (16):4880–903.

Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomat Sci Engineer. 2018;4):3939–3961. Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol Adv. 2015;33:1855–1867.

Jahanban-Esfahlan A, Dastmalchi S, Davaran S. A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int J Biol Macromol. 2016;91:703–709.

Muhammad Tahir H, Saleem F, Ali S, Ain QU, Fazal A, Summer M, Mushtaq R, Tariq Zahid M, Liaqat I, Murtaza G. Synthesis of sericin‐conjugated silver nanoparticles and their potential antimicrobial activity. Journal of Basic Microbiology. 2020;60(5):458-467.

Pankongadisak P, Suwantong O. The potential use of thermosensitive chitosan/ silk sericin hydrogels loaded with longan seed extract for bone tissue engineering. RSC Adv. 2018; 8:40219–31.

Yang M, Wang Y, Tao G, Cai R, Wang P, Liu L, Ai L, Zuo H, Zhao P, Umar A, Mao C, He H. Fabrication of sericin/agrose gel loaded lysozyme and its potential in wound dressing application. Nanomater. 2018;8:235.

Nagai N, Iwai Y, Deguchi S, Otake H, Kanai K, Okamoto N, Shimomura Y. Therapeutic potential of a combination of magnesium hydroxide nanoparticles and sericin for epithelial corneal wound healing. Nanomater. 2019;9:768.

Shah A, Ali-Buabeid M, Arafa E-SA, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharma. 2019;564:22–38.

Gilotra S, Chouhan D, Bhardwaj N, Nandi SK, Mandal BB. Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater Sci Eng C. 2018;90:420–32.

Wang R, Zhu Y, Shi Z, Jiang W, Liu X, Ni QQ. Degumming of raw silk via steam treatment. Journal of Cleaner Production. 2018;203:492-497.

Dutta S, Chowdhury T, Ghosh AK. Green synthesis of poly-L-lysine-coated sericin nanoparticles and their molecular size-dependent antibacterial activity. Colloids and Surfaces B: Biointerfaces. 2020; 188:110822.

Yang M, Wang Y, Tao G, Cai R, Wang P, Liu L, Ai L, Zuo H, Zhao P, Umar A, Mao C, He H. Fabrication of sericin/agrose gel loaded lysozyme and its potential in wound dressing application. Nanomater. 2018;8:235.

Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, Shen H. Preparation and characterization of AgNPs in situ synthesis on polyelectrolyte membrane coated sericin/agar film for antimicrobial applications. Material. 2018; 11:1205.

Ai L, He H, Wang P, Cai R, Tao G, Yang M, Liu L, Zuo H, Zhao P, Wang Y. Rational design and fabrication of ZnONPs functionalized sericin/PVA antimicrobial sponge. International Journal of Molecular Sciences. 2019;20(19):4796.

Akturk O, Gok ZG, Erdemli O, Yigitoglu M. One-pot facile synthesis of silk sericin-capped gold nanoparticles by UVC radiation: Investigation of stability, biocompatibility, and antibacterial activity. J Biomed Mat Res. 2019;107:2667–79.

Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. International Journal of Molecular Sciences. 2017;18(3):237.

He HW, Cai R, Wang YJ, Tao G, Guo PC, Zuo H, Chen LQ, Liu XY, Zhao P, Xia QY. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. Int J Biol Macromol. 2017; 104:457–64.

Moy RL, Lee A, Zalka A. Commonly used suture materials in skin surgery. Am Fam Physician. 1991;44:2123–2128.

Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24:401–416.

Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Bioscience, Biotechnology, and Biochemistry. 1998;62(1): 145–147.

Zhaorigetu S, Masahiro S, Watanabe H, Kato N. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Bioscience, Biotechnology and Biochemestry. 2001;65 (1):2181-2186.

Kaewkorn W, Limpeanchob N, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biological Research. 2012;45 (1):45-50.

Aramwit P, Palapinyo S, Srichana T, Chottanapund S, Muangman P. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Archives of Dermatological Research. 2013;305 (7):585-594.

Nishida A, Yamada M, Kanazawa T, Takashima Y, Ouchi K, Okada H. Sustained-release of protein from biodegradable sericin film, gel and sponge. International Journal of Pharmaceutics. 2011;407(1-2):44–52.

Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, Zhang G, Kundu SC, Wang L. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Scientific Reports. 2014;4(1):1-11.

Sasaki M, Yamada H, Norihisa K. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutrition Research. 2000;20(1):1505-1511.

Okazaki Y, Tomatake H, Tsujimoto K, Sasaki M, Kato N. Consumption of a resistant protein, sericin, elevates fecal immunoglobulin a, mucins, and cecal organic acids in rats fed a high-fat diet. The Journal of Nutrition. 2011;141 (11):1975-1981.

Reddy, B, Engle, A, Katsifis, S, Simi, B, Bartram, H.P, Perrino, P. and Mahan, C, 1989. Biochemical epidemiology of colon cancer: effect of types of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer research, 49(16):4629-4635.

Voegeli R, Meier J, Blust R. Sericin silk protein: unique structure and properties. Cosmetics & Toiletries. 1993;108 (1):101-108.

Patel R, Modasiya M. Sericin: Pharmaceutical applications. International Journal of Research in Pharmaceutical and Biomedical Sciencies. 2011;2 (3):913-917.

Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR. Silk sericin as a moisturizer: an in vivo study. Journal of Cosmetic Dermatology. 2005;4 (4):250-257.

Bari E, Perteghella S, Farago S, Torre ML. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. Int. J. Biol. Macromol. 2018;119:37–47.

Maxson S, Lopez E.A, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: Role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med. 2012;1:142–149.

Khorasani G, Hosseinimehr SJ, Azadbakht M, Zamani A, Mahdavi MR. Aloe versus silver sulfadiazine creams for second-degree burns: A randomized controlled study. Surg. Today 2009;39:587–591.

Campos LS, Mansilla MF, de la Chica AMM. Topical chemotherapy for the treatment of burns. Revista de Enfermería (Barcelona, Spain). 2005;28(5):67-70.

Aramwit P. Introduction to biomaterials for wound healing. In Wound healing biomaterials. Woodhead Publishing. 2016;3-38.

Kumar V, Babu AM, Sharma DD, Datta RK. Penetration and infection process of Phyllactinia corylea on mulberry leaf causing powdery mildew—I. Asexual Stage. Journal of Phytopathology. 1998;146(10):469-472.

Qi C, Deng Y, Xu L, Yang C, Zhu Y, Wang G, Wang Z, Wang L. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics. 2020;10:741–756.

Kunz RI, Brancalhao RM, Ribeiro LF, Natali MR. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int. 2016;8175701.

Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015;33:1855–1867.

Zhang S, Ren H, Sun H, Cao S. Dieckol exerts anticancer activity in human osteosarcoma (MG-63) cells through the inhibition of PI3K/AKT/mTOR signaling pathway. Saudi Journal of Biological Sciences. 2021;28(9):4908-4915.

Veiga A, Castro F, Reis CC, Sousa A, Oliveira AL, Rocha F. Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the e_ect of sericin on the biomineralization process. Mater. Sci. Eng. C. 2020;108:110400.

Dinescu S, Galateanu B, Albu M, Lungu A, Radu E, Hermenean A, Costache M. Biocompatibility assessment of novel collagen-sericin sca_olds improved with hyaluronic Acid and chondroitin sulfate for cartilage regeneration. BioMed Res. Int. 2013;598056.

Xie H, Yang W, Chen J, Zhang J, Lu X, Zhao X, Huang K, Li H, Chang P, Wang Z, et al. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv. Healthc. Mater. 2015;4:2195–2205.