Asian Journal of Biology

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 16 [Issue 4]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Analysis of the Influence of Zn Excess in the Pineal Gland by Total Reflection X-ray Fluorescence

  • Correa-Gillieron, Elenice Maria
  • Barbosa, Renata Faria
  • Ferezin-Pinto, Caroline
  • Martinez, Ana Maria Blanco

Asian Journal of Biology, Page 9-26
DOI: 10.9734/ajob/2022/v16i4307
Published: 29 December 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


The TXRF technique (total reflection X-ray fluorescence) was employed to analyze the concentration of zinc (Zn) and other metals in the pineal gland of rats submitted to orally administered excess dose of Zn sulfate. The histochemical localization of Zn was also performed. TXRF results showed a 42.9% increase in Zn concentration, and alterations on the homeostasis of other essential elements in rats. It was concluded that TXRF is a suitable technique for measuring, for the first time in this work, the concentration of Zn accumulated in the pineal gland after administration of an excess dose of Zn, and this result may be either directly or indirectly related to alteration in the homeostasis of other chemical elements, such as S, Cl, K, Ca, Ti, Cr, Mn and Fe.


Keywords:
  • Pineal
  • rat
  • Zinc
  • TXRF
  • hyperzincemia
  • Full Article – PDF
  • Review History

How to Cite

Elenice Maria, C.-G., Renata Faria, B., Caroline, F.-P., & Blanco, M. A. M. (2022). Analysis of the Influence of Zn Excess in the Pineal Gland by Total Reflection X-ray Fluorescence. Asian Journal of Biology, 16(4), 9-26. https://doi.org/10.9734/ajob/2022/v16i4307
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Ekstrom P, Meissl H. Evolution of photosensory pineal organs in new light: The fate of neuroendocrine photoreceptors. Phil Trans R Soc Lond B. 2003;358:1679-1700.

Ferezin-Pinto C. Investigações mineralógicas, histopatológicas e Ultraestruturais usando o modelo experimental de hyperzincemia na glândula pineal de ratas jovens.Tese de Mestrado, Universidade Federal do Rio de Janeiro (UFRJ), Programa de Ciências Morfológicas do Instituto de Ciências Biomédicas, CCS, Rio de Janeiro, Brasil; 2010.

Ferreira-Medeiros M, Correa-Gillieron EM. Recognition of N-acetylglucosamine and Poly-N-acetyl lactosamine residues in vessels of the rat pineal gland. Int J Morphol 2004;22:285-290.
Available: http://dx.doi.org/10.4067/S0717-95022004000400008

Ferreira-Medeiros, Mandarim-de-Lacerda CA, Correa-Gillieron EM. Pineal gland pos-natal growth in rat revisited. Anat Histol Embryol. 2007;36(4):284-289.
Available: https://doi.org/10.1111/j.1439-0264.2007.00763.x

Reiter RJ. Pineal melatonin: Cell biology of its synthesis amd of its physiological interactions..Endocr. Rev. 1981;12:151-180.

Bukreeva I, Junemann O, Cedola A, Palermo F, Maugeri L, Provinciali GB, Pieroni N, Sanna A, Otlyga DA, Buzmakov A, Krivonosov Y, Zolotov D, Chukalina M, Ivanova A, Saveliev S, Asadchikov V, Fratini M. Investigation of the human pineal gland 3D organization by X-ray phase contrast tomography. Journal of Structural Biology. 2020;212:1-12.

Opresko DM. Toxicity summary for zinc and zinc compounds, Chemical Hazard Evaluation and Communication Group Biomedical and Environmental Information Analysis Section, Health and Safety Research Division – Prepared for Oak Rdge Reservation Environmental Restoration Program, Oak Ridge, Tennessee; 1992.

Brito S, Lee MG, Bin BH, Lee JS. Zinc homeostasis regulates epigenetics. Mol. Cells. 2020;43(4):323-330.

Choi S, Hong Dk, Choi B, Suh SW. Zinc in the brain: Friend or Foe? Int J Mol Sci. 2020;21(23),8941: 1-24.

Blakemore LJ, Trombley PQ. Zinc as a neuromodulator in the central nervous system with a focus on the olfactory bulb. Frontiers in Cellular Neuroscience. 2017;297:1-20.

Constable EC. Evolution and understanding of the d-block elements in the periodic table. Royal Society of Chemistry. Dalton Trans. 2019;48:9408-9421.

Bitanihirwe BK, Cunningham MG. Zinc: The brain’s dark horse. Synapse. 2009;63:1029–1049.

Ozturk G, Akbulut KG, Afrasyap L. Age-related changes in tissue and plasma zinc levels: Modulation by exogenously administered melatonin. Exp Aging Res. 2008 34:453-462.

Frederickson CJ, Sang Won Suh DS, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: The zinc-containing neuron. The Journal of Nutrition. 2000;130(5):1471S–1483S.
Available:https://doi.org/10.1093/jn/130.5.1471S

López-García C, Varea E, Palop JJ, Nacher J, Ramirez C, Ponsoda X, Molowny A. Cytochemical techniques for zinc and heavy metals localization in nerve cells. Microsc Res Tech. 2002;1,56(5):318-31.

Janssen CR, De Schamphelaere K, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, Sprang P. Uncertainties in the environmental risk assessment of metals. Hum Ecol Risk Assess. 2000;6:1003-1018.

Poweel SRA. The antioxidant properties of zinc. J. Nutr. 2000;130:1447-1454.

de Moura JE, de Moura ENO, Alves CX, Vale SHL, Dantas MMG, Silva AA, Almeida MG, Leite LD, Brandão-Neto J. Oral zinc supplementation may improve cognitive function in schoolchildren. Biol Trace Elem Res. 2013;155:23-28.
Available:https://doi.org/10.1007/s12011-013-9766-9

Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12):1286.
Available:https://doi.org/10.3390/nu9121286

Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacol. 2017;25:11–24.

Bitanihirwe BK, Cunningham MG. Zinc: the brain’s dark horse. Synapse. 2009;63:1029–1049.

Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G. Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Resear Bull. 2001;55:125-132.

Bush AI. Metals and neuroscience. Curr Opin Chem Biol. 2000;4:184-191.

Choi DW, Yokoyama M, Koh J. Zinc neurotoxicity in cortical cell culture. Neuroscience. 1988;24(1):67-79.
DOI: 10.1016/0306-4522(88)90312-0

Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of metal homeostasis in the synapse. Molecules. 2020;25(6):1441-1460.

Cuajungco MP, Less G. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis. 1997;4:137-169.

Bush AI, Pettingell WH, Multhaup G, Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994;265:1464-1467.

Erikson KM, Thompson K, Aschner J, Aschner M. Manganese neurotoxicity: A focus on the neonate. Pharmacology & Therapeutics. 2007;113(2):369–77.
DOI:10.1016/j.pharmthera.2006.09.002

Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Sci. 1996;272:1013-1016.

Adlard PA, Bush AI. Metals and alzheimer’s disease: How far have we come in the clinic? J. Alzheimers. Dis. 2018;62:1369–1379.

Serpa RFB, Jesus EFO, Anjos MJ, Carmo MGT, Moreira S, Rocha MS, Martinez AMP, Lopes RT. Elemental concentration analyze in brain structures from young, adult and old wistar rats by total reflection X-ray fluorescence with synchrotron radiation. Spectrochim Acta Part B. 2006;61:1205-1209.

Klockenkamper R. Total-reflection X-ray fluorescence analysis. Institut fur Spectrochemie und Angewandte Spektroskopie. Dourtmund, Germany. 1996;140.

Shaw E, Dean LA. Use of Dithizone as an extractant to estimate the zinc nutrient. Status of soils. Soil Sci. 1952;73(5):341-348.

Hamani C, de Paulo I, Mello LEAM. Neo-Timm staining in the thalamus of chronically epileptic rats. Braz J Med Biol Res. 2005;38:1677-1682.

Danscher G. Histochemical demonstration of heavy metais. Histochemi. 1981;71:1-16.

Danscher G, Zimmer J. An improved Timm sulphide silver method for light and electron microscopic localization of heavy metals in biological tissue. Histochemi. 1978;55:27-40.

Frederickson CJ, Kasarkis EJ, Ringo D, Frederickson RE. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J. Neurosci. Methods. 1987;20:91-103.

Slovitter R. A simplified Timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain. Brain Res Bull. 1982;8:771-774.

Bancroft JD, Gamble M. Theory and practice of histological techniques. Reino Unido: Churchill Livingstone. 2008:121-134.

McCormick N, Velasquez V, Finney L, Vogt S, Kelleher SL. X-Ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLOS ONE. 2010;5(6):e11078.

Klockemkãmper R, Von Bohlen A. Elemental analysis of environmental samples by total reflection fluorescence: A review. X-Ray Spectrom. 1996;25:156-162.

Takeda A. Zinc homeostasis and functions of zinc in the brain. BioMetals. 2001;14:343-351.

Yokoyama M, Koh J, Choi DW. Brief exposure to zinc is toxic to cortical neurons. NeurosciLett. 1986;71:351-355.

Tubek S, Grzanka P, Tubek I. Role of zinc in hemostasis: A review. Biol Trace Elem Res. 2008;121:1-8.

Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of alzheimer’s disease brains. Brain Res. 2000;852:274-278.

Person O, Botti AS, Péres MCLC. Clinical repercussions of zinc deficiency in human beings. Arq Med ABC. 2006;31:46-52.

Fluegge KBA. Zinc and copper metabolism and risk of autism: A reply to Sayehmiri et al. Iranian Journal of Child Neurology. 2017;11(3):66–69.

Kaur C, Ling EA. The circumventricular organs. Histol Histopathol. 2017;32(9):879-892.

Zatta P, Raso M, Zambenedetti P, Rocco P, Petretto A, Mauri P, Cozzi B. Metallothionein-I-II expression in young and adult bovine pineal gland. J Chem Neuroanat. 2006;31(2):124-129.

Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: A brief overview. J Inorg Biochem. 2019;195:120-129.

Hock A, Demmel U, Schicha H, Kasperek K, Feinendegen LE. Trace element concentration in human brain. Brain. 1975;98:49-64.

Demmel U, Höck A, Kasperek K, Feinendegen LE. Trace element concentration in the human pineal body. Activation analysis of cobalt, iron, rubidium, selenium, zinc, antimony and cesium. Sci. Total Environ. 1982;24(2):135-146.

Takeda A. Analysis of brain function and preventions of brain diseases: Theactions of trace metals. J Health Sci. 2004;50(5):429-44.

Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, Zappia M, Nicoletti A. Metals and neurodegenerative diseases. A systematic review. Environ Res. 2017;159:82–89.

Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: The zinc-containing neuron. J Nutr. 2000;130:1471S–1483S.

David J, Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta (BBA) Molecular Cell Research. 2006;1763(7):711-722.

Palmiter RD, Cole TB, Quaife CJ. ZnT-3 putative transporter zinc into synaptic vesicles. Proc Natl Acad Sci USA. 1996;93:14934-14939.

Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem. 2021;296:1-27.

Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK. Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem. 2007;388:1301–1312.

King JC, Shames DM, Woodhouse LR. Zinc homeostasis in humans. The Journal of Nutrition. 2000;130(5):1360S-1366S.

Tubek S. Zinc supplementation or regulation of its homeostasis: Advantages and threats. Biological Trace Element Research. 2007;119(1):1-9.

Chung RS, West AK. A role for extracellular metallothioneins in CNS injury and repair neurosc. 2004;123:595-599.

Baltaci AK, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins. Biol Trace Elem Res. 2018;183(1):22-3.

Hongfang G, Guanghui C, Khan R, Huanxia J, Jianxin Z, Abbas Raza SH, Ayaz M, Shafiq M, Zan L. Review: Molecular structure and functions of zinc binding metallothionein-1 protein in mammalian body system. Pak J Pharm Sci. 2020;33(4):1719-1726.

Wan Y, Zhang B. The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules. 2022;12(7):900.

Kordas K, Stoltzfus RJ. New evidence of iron and zinc interplay at the enterocyte and neural tissues. J Nutr. 2004;134:1295–1298.

Grochowski C, Blicharska E, Krukow P, Jonak K, Maciejewski M, Szczepanek D, Jonak K, Flieger J, Maciejewski R. Analysis of trace elements in human brain: Its aim, methods, and concentration levels. Frontiers in Chemistry. 2019;7.
Available:https://doi.org/10.3389/fchem.2019.00115

Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019;11(8): 1885.

Pereira AM, Maia MRG, Fonseca AJM, Cabrita ARJ. Zinc in dog nutrition, health and disease: A review. Animals (Basel). 2021;11(4):978.

Maares M, Haase H. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients. 2020;12(3):762.

Liuzzi JP, Bobo JA, Lichten LA, Samuelson DA, Cousins RJ. Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proceedings of the National Academy of Sciences. 2004;101(40):14355-14360.

Gupta S, Merriman C, Petzold CJ, Ralston CY, Fu D. Water molecules mediate zinc mobility in the bacterial zinc diffusion channel ZIPB. Journal of Biological Chemistry. 2019;294(36):13327-13335.

Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L, Chatterjee M. Metallothionein: An overview. World Journal of Gastroenterology. 2007;13(7):993–996.
Available:https://doi.org/10.3748/wjg.v13.i7.993

Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: A systematic review. Advances in nutrition (Bethesda, Md.). 2016;7(4):735–746.
Available:https://doi.org/10.3945/an.116.012518

Pandi-Perumal, S R, Srinivasan, V; MaestroniI,GJ.M et al. Melatonin. Nature’s most versatile biological signal? FEBS Journal, 2006;273: 2813-2838.

Pup M, Ahmadi-Vincu M, Velciov AB, Gârban Z, Dronca D. The effect of zinc chloride administration on some trace metals in wistar rats liver. J Agroaliment Proc and Technol. 2006;XII(2):521-528.

Himeno S, Fujishiro H. Roles of zinc transporters that control the essentiality and toxicity of manganese and cadmium. Cited in Yakugaku Zasshi Japanese. 2021;41(5):695-703.

Qi Z, Liu KJ. The interaction of zinc and the blood-brain barrier under physiological and ischemic conditions. Toxicol Appl Pharmacol. 2019;364:114-119.

Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences. 2013;18(2):144-157.

Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neuro Toxicology. 2019;74:230-241.
Available:https://doi.org/10.1016/j.neuro.2019.07.007

Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99:p105-p110.
DOI: 10.1159/000083981

Cousins RJ, Liuzzi JP, Lichten LA. Mammalian zinc transport, trafficking, and signals. J Biol Chem. 2006;281:24085–24089.

Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of 3n zinc homeostasis and metabolism. Physiol Rev. 2015;96:749-784.

Matsushima S, Reites RJ. Ultrastructural observations of pineal gland capillaries in four rodent species. Am J Anat. 1975;143:265-282.

Hodde KC, Veltman WA. The vascularization of the pineal gland (epiphysis cerebri) of the rat. Scan Electron Microsc. 1979;(3):369-74.

Duvernoy HM, Parratte B, Tatu L, Vuillier F. The human pineal gland: Relationships with surrounding structures and blood supply. Neurol Res. 2000; 22(8):747-90.
DOI: 10.1080/01616412.2000.11740753

Sangiliyandi S, Quasim M, Kang MH, Kim JH. "Role and therapeutic potential of melatonin in various type of cancers." Onco Targets and Therapy. 2021;14:2019.

Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol. 2009;240:219-225.

Taylor JG, Bushinsky DA. Calcium and phosphorus homeostasis. Blood Purif. 2009;27:387-394.

Pozzan T, Rizzuto R. The renaissance of mitochondrial calcium transport. Eur J Biochem. 2000;267:5269-5273.

Santos APM, Milatovic D, Au C, Yin Z, Batoreu MC, Aschner M. Rat brain endothelial cells are a target of manganese toxicity. Brain Res. 2010;1326: 152-16.

Fujishiro H, Kambe T. Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP. J Pharmacol Sci. 2022;148(1):125-133.

Gennari FJ. Disorders of potassium homeostasis. Hypokalemia and hyperkalemia. Crit Care Clin. 2002;18:272-288.
  • Abstract View: 89 times
    PDF Download: 39 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Asian Journal of Biology. All rights reserved.