Asian Journal of Biology

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 14 [Issue 4]
  4. Review Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Molecular Mechanisms behind the Regulation of Rice Tiller Angle: An Update

  • Rao Saad Rehman
  • Asad Nadeem Pasha
  • Syed Ali Zafar
  • Mujahid Ali
  • Hassan Bashir
  • Muhammad Usama Saeed
  • Naveed Ali Ashraf
  • Abdullah Javed

Asian Journal of Biology, Page 37-50
DOI: 10.9734/ajob/2022/v14i430225
Published: 9 May 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller angle in other species, thereby contributing to agricultural production in the future.


Keywords:
  • Tiller angle
  • shoot gravitropism
  • gravity-sensing tissues
  • amyloplast sedimentation
  • environmental plasticity
  • transcription factors
  • Full Article – PDF
  • Review History

How to Cite

Rehman, R. S., Pasha, A. N., Zafar, S. A., Ali, M., Bashir, H., Saeed, M. U., Ashraf, N. A., & Javed, A. (2022). Molecular Mechanisms behind the Regulation of Rice Tiller Angle: An Update. Asian Journal of Biology, 14(4), 37-50. https://doi.org/10.9734/ajob/2022/v14i430225
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Abe K, Takahashi H, Suge H. Localization of cells containing sedimented amyloplasts in the shoots of normal and lazy rice seedlings. Biol. Sci. Space. 1994;8(4):221-225.

Brock TG, Lu CR, Ghosheh NS, Kaufman PB. Localization and pattern of gravity response across the pulvinus of barley Hordeum vulgare. Plant Physiol. 1989;91(2):744-748.

Cao X, Deng M, Zhang ZL, Liu YJ, Yang XL, Zhou H, Zhang ZJ. Molecular characterization and expression analysis of TaTAC1 gene in Triticum aestivum. J. Plant Genet. Resour. 2017;18:125-132.

Chen C, Zou J, Zhang S, Zaitlin D, Zhu L. Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds. Sci. China C: Life Sci. 2009;52(8):693-700.

Chen Y, Dan Z, Gao F, Chen P, Fan F, Li S. Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and indole-3-acetic acid metabolism. Plant Physiol. 2020;184(1):393-406.

Chen Y, Fan X, Song W, Zhang Y, Xu G. Over‐expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant biotechnol.J. 2012;10(2):139-149.

Cui D, Neill SJ, Tang Z, Cai W. Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J. Exp. Bot. 2005;56(415):1327-1334.

Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. P pe TAC 1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J. 2013;75(4):618-630.

Dayanandan P, Hebard FV, Baldwin VD, Kaufman PB. Structure of gravity‐sensitive sheath and internodal pulvini in grass shoots. Am. J. Bot. 1977;64(10):1189-1199.

Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M. AXR4 is required for localization of the auxin influx facilitator AUX1. Science. 2006;312(5777):1218-1220.

Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet. 2016;12(11):112-120.

Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol. 2013;163(3):1306-1322.

Edelmann HG. Graviperception in maize plants: is amyloplast sedimentation a red herring?. Protoplasma. 2018;255(6):1877-1881.

Fujihira K, Kurata T, Watahiki MK, Karahara I, Yamamoto KT. An agravitropic mutant of Arabidopsis, endodermal-amyloplast less 1, that lacks amyloplasts in hypocotyl endodermal cell layer. Plant Cell Physiol. 2000;41(11):1193-1199.

Fukaki H, Fujisawa H, Tasaka M. Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol. 1996;110(3):933-943.

Fukaki H, Wysocka‐Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 1998;14(4):425-430.

Gao H, Wang W, Wang Y, Liang Y. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Mol. Breed. 2019;39(12):1-5.

Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005;44(2):179-194.

Rehman RS, Zafar SA, Ali M, Pasha AN, Bashir H, Ashraf MA, Yaqoob MU, Hussain M. Biochemical and Molecular Insights into Abiotic Stress Tolerance in Plants. Asian J. Biotech. Gen. Engg. 2022;5(2):1-19.

Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S. N‐glycan containing a core α1, 3‐fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). New Phytol. 2016;212(1):108-122.

Hashiguchi Y, Yano D, Nagafusa K, Kato T, Saito C, Uemura T, Ueda T, Nakano A, Tasaka M, Terao Morita M. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem. Plant Cell Physiol. 2014;55(4):811-822.

Hollender C, Hill J, Waite J, Dardick C. Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in Arabidopsis. Sci. Rep. 2020;10: 6051-6060.

Hollender CA, Waite JM, Tabb A, Raines D, Chinnithambi S, Dardick C. Alteration of TAC1 expression in Prunus species leads to pleiotropic shoot phenotypes. Hortic. Res. 2018;5:101-109.

Hu M, Lv S, Wu W, Fu Y, Liu F, Wang B, Li W, Gu P, Cai H, Sun C, Zhu Z. The domestication of plant architecture in African rice. Plant J. 2018;94(4):661-669.

Hu Y, Li S, Fan X, Song S, Zhou X, Weng X, Xiao J, Li X, Xiong L, You A, Xing Y. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol. 2020;184(3):1424-1437.

Huang L, Wang W, Zhang N, Cai Y, Liang Y, Meng X, Yuan Y, Li J, Wu D, Wang Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity‐sensing cells. New Phytol. 2021;231(3):1073-1087.

Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N. Genomic architecture of heterosis for yield traits in rice. Nature. 2016;537(7622):629-633.

Jiang J, Tan L, Zhu Z, Fu Y, Liu F, Cai H, Sun C. Molecular evolution of the TAC1 gene from rice (Oryza sativa L.). J. Genet. Genomics. 2012;39(10):551-560.

Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat. Genet. 2008;40(11):1365-1369.

JONES JW, Adair CR. A “lazy” mutation in rice. J. Hered. 1938;29(8):315-318.

Kaufman PB, Brock TG, Song IL, Rho YB, Ghosheh NS. How cereal grass shoots perceive and respond to gravity. Am. J. Bot. 1987;74(9):1446-1457.

Rehman RS, Khan K, Zafar SA, Pasha AN, Ali M, Ashraf MA, Bashir H, Rashid F. Character Association Studies in Various Brassica napus Genotypes under Drought Stress. Asian J. Res. Bot. 2022;7(2):20-27.

Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One. 2011;6(6):123-130.

Kunz HH, Häusler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge UI, Schneider A. The role of plastidial glucose‐6‐phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol. 2010;12:115-128.

Lauri PE, Claverie J, Lespinasse JM. The effects of bending on the growth and fruit production of INRA Fercer® sweet cherry. Acta. Hortic. 1997:411-418.

Ledesma N, Campbell RJ, Wasielewski J. Training and pruning a mango orchard to improve blooming and yield in South Florida. Proc. Fla. State Hortic. Soc 2016;129:14-16.

Li H, Sun H, Jiang J, Sun X, Tan L, Sun C. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol. J. 2021;19(1):64-73.

Li Y, Deng Z, Kamisugi Y, Chen Z, Wang J, Han X, Wei Y, He H, Terzaghi W, Cove DJ, Cuming AC. A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nat. Commun.. 2021;12(1):1-2.

Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 2007;17(5):402-410.

Li S, Zheng T, Zhuo X, Li Z, Li L, Li P, Qiu L, Pan H, Wang J, Cheng T, Zhang Q. Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle. Hortic. Res. 2020;7-14.

Li Y, Li J, Chen Z, Wei Y, Qi Y, Wu C. OsmiR167a‐targeted auxin response factors modulate tiller angle via fine‐tuning auxin distribution in rice. Plant Biotechnol. J. 2020;18(10):2015-2026.

Li Y, Zhu J, Wu L, Shao Y, Wu Y, Mao C. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol. 2019;60(12):2720-2732.

Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol. Plant. 2019;12(8):1143-1156.

Liu JM, Mei Q, Xue CY, Wang ZY, Li DP, Zhang YX, Xuan YH. Mutation of G‐protein γ subunit DEP1 increases planting density and resistance to sheath blight disease in rice. Plant Biotechnol. J. 2021;(3):418-425.

Marone D, Rodriguez M, Saia S, Papa R, Rau D, Pecorella I, Laidò G, Pecchioni N, Lafferty J, Rapp M, Longin FH. Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. Int. J. Mol. Sci. 2020;21(2):394-400.

Miyashita Y, Takasugi T, Ito Y. Identification and expression analysis of PIN genes in rice. Plant Sci. 2010;178(5):424-428.

Morita MT. Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 2010;61:705-720.

Morita MT, Tasaka M. Gravity sensing and signaling. Curr. Opin. Plant Biol. 2004;7(6):712-718.

Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol. 2015;167(4):1321-1331.

Nagashima A, Uehara Y, Sakai T. The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol. 2008;49(8):1250-1255.

Najrana T, Sanchez-Esteban J. Mechanotransduction as an adaptation to gravity. Front. Pediatr. 2016;4:140-150.

Nakamura M, Nishimura T, Morita MT. Gravity sensing and signal conversion in plant gravitropism. J. Exp. Bot. 2019;70(14):3495-506.

Nakamura M, Toyota M, Tasaka M, Morita MT. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell. 2011;23(5): 1830-1848.

Okamura M, Hirose T, Hashida Y, Ohsugi R, Aoki N. Suppression of starch synthesis in rice stems splays tiller angle due to gravitropic insensitivity but does not affect yield. Funct. Plant Biol. 2014;42(1):31-41.

Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct. Plant Biol. 2013;40(11):1137-1146.

You-nan O, Chun-sheng L, Shan-qing Z, Hui-min W, Lian-feng Z, Sheng-miao Y, Qian-yu J, Guo-ping Z. Dynamic changes of rice (Oryza sativa L.) tiller angle under effects of photoperiod and effective accumulated temperature. Chin. J. Ecol. 2009;20:56-65.

Parker ML. Morphology and ultrastructure of the gravity-sensitive leaf sheath base of the grass Echinochloa colonum L. Planta. 1979;145(5):471-477.

Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B, Zou J. The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol. 2000;122(4):1193-1200.

Rakusová H, Gallego‐Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J. Polarization of PIN3‐dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J. 2011;67(5):817-826.

Rijken PJ, De Groot RP, Kruijer W, De Laat SW, Verkleij AJ, Boonstra J. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv. Space Res. 1992;12(1):145-152.

Roberts D. Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome. 1990;33(2):247-259.

Sack FD. Plastids and gravitropic sensing. Planta. 1997;203(1):63-68.

Sack FD, Leopold AC. Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles. Planta. 1985;164(1):56-62.

Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, An G, Paek NC. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol. 2015;56(12):2325-2339.

Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc. Natl. Acad. Sci. USA. 2014;111(30):11199-11204.

Santelia D, Trost P, Sparla F. New insights into redox control of starch degradation. Curr. Opin. Plant Biol. 2015;25:1-9.

Sieberer T, Leyser O. Auxin transport, but in which direction? Science. 2006;312(5775):858-860.

Slewinski TL, Braun DM. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci. 2010;178(4):341-349.

Song K, Lee DW, Kim J, Kim J, Guim H, Kim K, Jeon JS, Choi G. EARLY STARVATION 1 is a functionally conserved protein promoting gravitropic responses in plants by forming starch granules. Front. Plant Sci. 2021;12-25.

Strohm AK, Baldwin KL, Masson PH. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front. Plant Sci. 2012;3:274-285.

Sun Q, Li TY, Li DD, Wang ZY, Li S, Li DP, Han X, Liu JM, Xuan YH. Overexpression of loose plant architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN‐FORMED 1a in rice. Plant Biotechnol. J. 2019;17(5):855-890.

Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 2005;7(11):1057-1065.

Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008;40(11):1360-1364.

Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita MT. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell. 2017;29(8): 1984-1999.

Tanimoto M, Tremblay R, Colasanti J. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Mol. Biol. 2008;67(1):57-69.

Tian G, Gao L, Kong Y, Hu X, Xie K, Zhang R, Ling N, Shen Q, Guo S. Improving rice population productivity by reducing nitrogen rate and increasing plant density. PloS One. 2017;12(8): 99-109.

Tuncel A, Okita TW. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci. 2013;211:52-60.

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455(7210):195-200.

Overbeek JV. “LAZY,” AN A-GEOTROPIC FORM OF MAIZE: “Gravitational Indifference” Rather Than Structural Weakness Accounts for Prostrate Growth-Habit of This Form. J. Hered. 1936;27(3):93-96.

Vandenbrink JP, Kiss JZ. Plant responses to gravity. Semin. Cell Dev. Biol. 2019;92:122-125.

Vitha S, Yang M, Sack FD, Kiss JZ. Gravitropism in the starch excess mutant of Arabidopsis thaliana. Am. J. Bot. 2007;94(4):590-598.

Vorselen D, Roos WH, MacKintosh FC, Wuite GJ, van Loon JJ. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 2014;28(2):536-547.

Waite JM, Dardick C. TILLER ANGLE CONTROL 1 modulates plant architecture in response to photosynthetic signals. J. Exp. Bot. 2018;69(20):4935-4944.

Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P. Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol. Plant. 2009;2(4):823-831.

Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PloS One. 2008;3(10):191-200.

Wang Y, Li J. Molecular basis of plant architecture. Annu. Rev. Plant Biol.. 2008;59:253-279.

Wang Y, Li J. Rice, rising. Nat. Genet. 2008;40(11):1273-1275.

Wang Y, Li J. Branching in rice. Curr. Opin. Plant Biol. 2011;14(1):94-99.

Wang Y, Shang L, Yu H, Zeng L, Hu J, Ni S, Rao Y, Li S, Chu J, Meng X, Wang L. A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol. Plant. 2020;13(6):923-932.

Wu X, Tang D, Li M, Wang K, Cheng Z. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol. 2013;161(1):317-329.

Wu Y, Zhao S, Li X, Zhang B, Jiang L, Tang Y, Zhao J, Ma X, Cai H, Sun C, Tan L. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat. Commun. 2018;9(1):1-10.

Xia X, Mi X, Jin L, Guo R, Zhu J, Xie H, Liu L, An Y, Zhang C, Wei C, Liu S. CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis). BMC Plant Biol. 2021;21(1):1-12.

Xie C, Zhang G, An L, Chen X, Fang R. Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice. Planta. 2019;250(1):105-114.

Xu M, Zhu L, Shou H, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 2005;46(10):1674-1681.

Xu R, Sun C. What happened during domestication of wild to cultivated rice. Crop J. 2021;9(3):564-576.

Rehman RS, Ali M, Zafar SA, Hussain M, Pasha A, Naveed MS, Ahmad M and Waseem M. Abscisic Acid Mediated Abiotic Stress Tolerance in Plants. Asian J. Res. C. Sci. 2022;7(1):1-17.

Rehman RS, Zafar SA, Ali M, Pasha AN, Naveed MS, Waseem M and Raza A. CRISPR-Cas Mediated Genome Editing: A Paradigm Shift towards Sustainable Agriculture and Biotechnology. Asian P. Res. J. 2022;9(1):27-49.

Rehman RS, Zafar SA, Ali M, Ahmad M, Pasha AN, Waseem M, Hafeez AH and Raza A. Plant Pan-genomes: A New Frontier in Understanding Genomic Diversity in Plants. J. Adv. Bio. Biotech. 2022;25(1):10-22.

Rehman RS, Pasha AN, Zafar SA, Ali M, Waseem M, Ahmad M, Ahmad N, Hafeez AH. Chromosomal Engineering through CRISPR–. Cas Technology: A Way Forward. J. Adv. Bio. Biotech. 2022;25(1):34-45.

Rehman RS, Ali M, Zafar SA, Ahmad M, Pasha AN, Bashir H, Rashid F and Hussain M. Tapping into the Unsung Potential of CRISPR/CAS Technology in Agriculture. Asian J. Biochem. Gen. Mol. Bio. 2022;10(4): 1-26.
  • Abstract View: 32 times
    PDF Download: 12 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Asian Journal of Biology. All rights reserved.