Studies on Optimization of Culture Conditions and Medium Components for the Production of Mycelial Biomass of Auricularia delicata under Submerged Fermentation

Main Article Content

Muharagi Samwel Jacob
Li Xiao
Mabagala Frank Stephano
Xu Anran

Abstract

Aims: To optimize the culture conditions and medium components for the production of mycelial biomass of A. delicata under submerged fermentation.

Place and Duration of Study: China–Zambia Agricultural demonstration center and Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, China between July 2019 and June 2020.

Methodology: In this study, a single factor at a time method was employed in the optimization of submerged culture conditions and medium components for the production of mycelial biomass of A. delicata (strain YD 99). Each factor was screened independently while other factors were kept constant.

Results: The findings of this study demonstrate that the optimal culture conditions obtained were as follows: carbon source (Glucose) 20 gl-1, pH 6.0, nitrogen source (Yeast extract) 2 gl-1, mineral elements (K2HPO4+MgSO4.7H20) 2gl-1, and incubation temperature 25°C. The application of these optimal culture conditions produced a maximum concentration of 7.34gl-1 mycelial biomass of A. delicata.

Conclusion: Consequently, our results indicated that the optimization of culture conditions and medium components is of significant importance for the cultivation of A. delicata.

Keywords:
Auricularia delicate, mycelial biomass, submerged fermentation, optimal culture condition.

Article Details

How to Cite
Jacob, M. S., Xiao, L., Stephano, M. F., & Anran, X. (2020). Studies on Optimization of Culture Conditions and Medium Components for the Production of Mycelial Biomass of Auricularia delicata under Submerged Fermentation. Asian Journal of Biology, 10(4), 56-67. https://doi.org/10.9734/ajob/2020/v10i430117
Section
Original Research Article

References

Xu Y, Shen M, Chen Y, Lou Y, Luo R, Chen J. et al. Optimization of the polysaccharide hydrolysate from Auricularia auricula with antioxidant activity by response surface methodology. International Journal of Biological Macromolecules. 2018;113:543-549. DOI: 10.1016/j.ijbiomac.2018.02.059.

Zhang Y, Zeng Y, Men Y, Zhang J, Liu H, Sun Y. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. International Journal of Biological Macromolecules. 2018;115:978-984. DOI: 10.1016/j.ijbiomac.2018.04.145.

Ulziijargal E, Mau JL. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. International Journal of Medicinal Mushrooms. 2011;13(4). DOI: 10.1615/IntJMedMushr.v13.i4.40.

Devi M, Singh N. Evaluation of proximate nutritional value of edible Auricularia delicata and A. polytricha from Manipur. Journal of Mycopathological Research. 2011;49(1):199-200.

Ohiri RC, Bassey EE. Evaluation and characterization of nutritive properties of the jelly ear culinary-medicinal mushroom Auricularia auricula-judae (Agaricomycetes) from Nigeria. International Journal of Medicinal Mushrooms. 2017;19(2):173-177. DOI: 10.1615/IntJMedMushrooms.v19.i2.90.

Xu S, Zhang Y, Jiang K. Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula. Food Functions. 2016;7(9):3868-79. DOI: 10.1039/C6fo00686h.

Bandara AR, Rapior S, Mortimer PE, Kakumyan P, Hyde KD, Xu J. A review of the polysaccharide, protein and selected nutrient content of Auricularia, and their potential pharmacological value. Mycosphere. 2019;10(1):579-607. DOI: 10.5943/mycosphere/10/1/10.

Ramkumar L, Ramanathan T, Thirunavukkarasu P, Arivuselvan N. Antioxidant and radical scavenging activity of nine edible mushrooms extract. International Journal of Pharmacology. 2010;6(6):950-953. DOI:10.3923/ijp.2010.950.953.

Liang CH, Wu CY, Lu PL, Kuo YC, Liang ZC. Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi Journal of Biological Science. 2019;26(2):263-269. DOI: 10.1016/j.sjbs.2016.10.017.

BOA ER. Wild edible fungi: a global overview of their use and importance to people. Rome-Italy: Food & Agriculture Organization. 2004;1-157.

Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends in Food Science & Technology. 2019;92:94-110. DOI:10.1016/J.TIFS.2019.08.009.

Bandara AR, Karunarathna SC, Mortimer, PE, Hyde KD, Khan S, Kakumyan P, Xu J. First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycological Progress. 2017;16(11-12):1029-1039. DOI: 10.1007/s11557-017-1344-7.

Reis FS, Martins AB, Lillian F, Isabel CF. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food and Chemical Toxicology. 2012;50(5):1201-1207. DOI: 10.1016/j.fct.2012.02.013.

Lee IS, Kirschner R, Chen ST. Medicinal Mushroom Taiwanofungus camphoratus: A potential cure for cancer. Functional Foods in Health and Disease. 2019;9(8):508-20. DOI:10.31989/fhd.v9i8.576.

Lowy B. A morphological basis for classifying the species of Auricularia. Mycologia. 1951;43:351–358. DOI:10.1080/00275514.1951.12024135.

Looney BP, Birkebak JM, Matheny PB. Systematics of the genus Auricularia with an emphasis on species from the southeastern United States. North American Fungi. 2013;8:1- 25. DOI:10.2509/NAF2013.008.006.

Gao F, Xie LH, Lu W, Dong W, Tao H. Study on submerges fermentation and cultivation of Auricularia polytricha. Edible Fungi of China. 2009;28:32-34.

Berovič M, Popovic M. Submerged cultivation of Ganoderma lucidum biomass in stirred tank reactor. Chemical and Biochemical Engineering Quarterly. 2018;32(4):465-472. DOI: 10.15255/CABEQ.2018.1371.

García-Cruz F, Durán-Páramo, E, Garín-Aguilar MA, del Toro GV, Chairez I. Parametric characterization of the initial pH effect on the polysaccharides production by Lentinula edodes in submerged culture. Food and Bioproducts Processing. 2020;119:170-178. DOI: 10.1016/j.fbp.2019.10.016.

Zurbano LY. Mycelial growth and fructification of earwood mushroom (Auricularia polytricha) on Different Substrates. KnE Social Sciences. 2018;799–814. DOI: 10.18502/kss.v3i6.2421.

Tang YJ, Zhu, LW, Li HM, Li DS. Submerged Culture of Mushrooms in Bioreactors--Challenges, Current State-of-the-Art, and Future Prospects. Food Technology & Biotechnology. 2007;45(3).

Vieira GR, Liebl MT, Lorena BB, Paulert R, Smânia JA. Submerged culture conditions for the production of mycelial biomass and antimicrobial metabolites by Polyporus tricholoma Mont. Brazilian Journal of Microbiology. 2008;39(3):561-568. DOI: 10.1590/S1517-838220080003000029.

Petre M. and Petre V. Biotechnology of Mushroom Growth Through Submerged Cultivation. Mushroom Biotechnology. 2016;1-18. doi: 10.1016/B978-0-12-802794-3.00001-1.

Hu X, Liu C, Wang X, Jia D, Lu W, Sun X. Hpyerglycemic and anti-diabetic nephritis activities of polysaccharides separated from Auricularia auricular in diet-streptozotocin-induced diabetic rats. Experimental and Therapeutic Medicine. 2017;13(1):352-358. DOI: 10.3892/etm.2016.3943.

Zhang B, Guan YY, Hu PF, Chen L, Xu GR Liu LC, et al. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Critical Reviews in Biotechnology. 2019;39(4):541-554. DOI: 10.1080/07388551.2019.1577798.

Zeng WC, Zhang Z, Gao H, Jia LR, Chen WY. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydrate Polymers. 2012;89(2):694-700. DOI: 10.1016/j.carbpol.2012.03.078.

Khaskheli SG, Zheng W, Sheikh SA, Khaskheli AA, Liu Y, Soomro AH. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. International Journal of Biological Macromolecules. 2015;81:387-95. DOI: 10.1016/j.ijbiomac.2015.08.020.

Mao XB, Eksriwong, Titiporn C, Somchai Z, Jian J. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochemistry. 2005;40(5):1667-1672. DOI: 10.1016/j.procbio.2004.06.046.

Anike FN, Isikhuemhen OS, Blum D, Neda H. Nutrient requirements and fermentation conditions for mycelia and crude exo-polysaccharides production by Lentinus squarrosulus. Advances in Bioscience and Biotechnology. 2015;6(08):526. DOI:10.4236/abb.2015.68055

Wang XH, Chaobin Z, Pedro F, Changhe Z. Screening and characterization of Auricularia delicata strain for mushroom production under tropical temperature conditions to make use of rubberwood sawdust. Research Journal of Biotechnology. 2016;11(11).

Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World Journal of Microbiology and Biotechnology. 2015;31(12):1823-44. DOI:10.1007/s11274-015-1937-8

Fan XZ, Yao F, Yin CM, Shi DF, Gao H. Optimization of fermentation process and its impact on gene transcription of intracellular polysaccharide synthesis in the wood ear medicinal mushroom Auricularia auricula-judae (Agaricomycetes). International Journal of Medicinal Mushrooms. 2020;22(6). DOI:10.1615/IntJMedMushrooms.2020035033

Ghada MM. Optimization of submerged culture conditions for mycelial biomass production by shiitake mushroom (Lentinus edodes). Research Journal of Agriculture and Biologucal Sciences. 2011;7(4):350-356.

Morales D, Smiderle FR, Villalva M, Abreu H, Rico C, Santoyo S, Iacomini M, Soler-Rivas C. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. Journal of Functional Foods. 2019;60:103446. DOI:10.1016/J.JFF.2019.103446

Liu SR, Zhang WR. Optimization of submerged culture conditions involving a developed fine powder solid seed for exopolysaccharide production by the medicinal mushroom Ganoderma lucidum. Food Science and Biotechnology. 2019;28(4):1135-1145. DOI:10.1007/s10068-018-0536-5.

Dulay RM, Cabrera EC, Kalaw SP, Reyes RG, Hou CT. Nutritional requirements for mycelial growth of three Lentinus species from the Philippines. Biocatalysis and Agricultural Biotechnology. 2020;23:101506. DOI:10.1016/J.BCAB.2020.101506

Kim SS, Lee JS, Cho JY, Kim YE, Hong EK. Effects of C/N ratio and trace elements on mycelial growth and exo- polysaccharide production of Tricholoma matsutake. Biotechnology and Bioprocess Engineering. 2010;15(2):293-298. DOI: 10.1007/s12257-008-0226-x.

Wu T, Wang N, Zhang Y, Xu X. Research progress in submerged mycelial culture of Grifola frondosa, a culinary-medicinal mushroom. African Journal of Microbiology Research. 2016;10(6):138-146. DOI: 10.5897/AJMR2013.6453.

Hoa HT, Wang CL. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology. 2015;43(1):14-23. DOI:10.5941/ MYCO.2015.43.1.14

Pokhrel CP. Cultivation of oyster mushroom: a sustainable approach of rural development in Nepal. Journal of Institute of Science and technology. 2016;21(1):56-60. DOI:10.3126/JIST.V21I1.16050.

Dulay RMR, Andres SMB, Asuncion AFC, Calalang AS, Cumbe AP. Mycelial biomass production and radical scavenging activity of Lentinus tigrinus in submerged cultivation using selected tropical fruit juice. International Journal of Biology, Pharmacy and Allied Sciences. 2017c;6(11):2154-2161.

Lu H, Lou H, Wei T, Liu Z, Jiao Y, Chen Q. Ultrasound enhanced production of mycelia and exopolysaccharide by Agaricus bitorquis (Quél.) Sacc. Chaidam. Ultrasonics Sonochemistry. 2020;64:105040. DOI:10.1016/J.ULTSONCH.2020.105040

Si J, Meng G, Wu Y, Ma HF, Cui BK, Dai YC. Medium composition optimization, structural characterization, and antioxidant activity of exopolysaccharides from the medicinal mushroom Ganoderma lingzhi. International Journal of Biological Macromolecules. 2019;124:1186-96. DOI:10.1016/J.IJBIOMAC.2018.11.274

Dudekula U, Doriya K, Devarai SK. A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech. 2020;10(8):1-12. DOI: 10.1007/S13205-020-02333-Y.

Lazarević J, Stojičić D, Keča N. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest. Forest systems. 2016;25(1):3. DOI:10.5424/fs/2016251-07036

Jo WS, Kim D-G, Seok SJ, Jung HY, Park SC. The culture conditions for the mycelial growth of Auricularia auricula-judae. 2014;12(2):88-95. DOI: 10.14480/JM.2014.12.2.88.

Hassan NA, Supramani S, Sohedein MN, Usuldin SR, Klaus A, Ilham Z, Chen WH, Wan WA. Efficient biomass-exopolysaccharide production from an identified wild-Serbian Ganoderma lucidum strain BGF4A1 mycelium in a controlled submerged fermentation. Biocatalysis and Agricultural Biotechnology. 2019;21:101305. DOI:10.1016/J.BCAB.2019.101305.

Gupta C, Balakrishnan RM, Priyanka U, Pugazhendhi A. Mycosensing of soil contaminants by Ganoderma lucidum and Omphalotus subilludens including the insights on growth media requirements. Biocatalysis and Agricultural Biotechnology. 2019;20:101239. DOI:10.1016/j.bcab.2019.101239.

Rathore H, Prasad S, Kapri M, Tiwari A, Sharma S. Medicinal importance of mushroom mycelium: Mechanisms and applications. Journal of Functional Foods. 2019;56:182-93. DOI:10.1016/J.JFF.2019.03.016.

Feng J, Feng N, Zhang JS, Yang Y, Jia W, Lin CC. A new temperature control shifting strategy for enhanced triterpene production by Ganoderma lucidum G0119 based on submerged liquid fermentation. Applied biochemistry and Biotechnology. 2016;180(4):740-752. DOI: 10.1007/s12010-016-2129-1.

Bandara AR, Karunarathna SC, Phillips AJ, Mortimer PE, Xu J, Kakumyan P, Hyde KD. Diversity of Auricularia (Auriculariaceae, Auriculariales) in Thailand. Phytotaxa. 2017;292(1):19–34.

Miao J, Shi W, Zhang J, Zhang X, Zhang H, Wang Z, Qiu J. Response surface methodology for the fermentation of polysaccharides from Auricularia auricula using Trichoderma viride and their antioxidant activities. International Journal of Biological Macromolecules. 2020;155:393-402. DOI:10.1016/J.IJBIOMAC.2020.03.183

Shah P, Modi H. Statistical optimization of culture conditions for enhanced mycelial biomass production using Ganoderma lucidum. Journal of Applied Biology & Biotechnology. 2018;6(04):41-45.

Gupta S, Summuna B, Gupta M, Annepu SK. Edible mushrooms: cultivation, bioactive molecules, and health benefits. Bioactive Molecules in Food. Springer, Berlin. 2018;1-33. DOI:10.1007/978-3-319-78030 -6_86

Petre M. Mushroom Biotechnology: Developments and Applications. Academic Press: Bucharest Romania. 2015;240.

Zhang Z, Shen W, Liu D, Li, J. Enhanced production of mycelial biomass and ganoderic acid in submerged culture of Ganoderma applanatum ACCC-52297 elicited by feeding rutin. African Journal of Microbiology Research. 2011;5(21):3452-3461. DOI:10.5897/AJMR11.635.

Ramesh VC, Karunakaran C, Rajendran A. Optimization of submerged culture conditions for mycelial biomass production with enhanced antibacterial activity of the medicinal macro fungus Xylaria sp. Strain R006 against drug resistant bacterial pathogens.Current Research in Environmental & Applied Mycology. 2014;4(1):88-98. DOI: 10.5943/cream/4/1/7.

Yan JK., Wu JY. Submerged fermentation of medicinal fungus Cordyceps sinensis for production of biologically active mycelial biomass and exopolysaccharides, in Production of biomass and bioactive compounds using bioreactor technology. Springe Dordrecht. 2014;93-120. DOI:10.1007/978-94-017-9223-3_5.

Štursová M, Kohout P, Human ZR, Baldrian P. Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns. Journal of Fungi. 2020;6(4):190. DOI:10.3390/JOF6040190

Krupodorova TA, Barshteyn VY, Kizitska TO, Pokas EV. Effect of cultivation conditions on mycelial growth and antibacterial activity of Lentinula edodes and Fomitopsis betulina. Czech Mycology. 2019;7(2). DOI:10.33585/cmy.71204.

Mohamad SA, Awang MR, Rashid RA, Ling LS, Daud F, Hamid AD. et al. Optimization of Mycelial Biomass Production in Submerged Culture Fermentation of Pleurotus flabellatus using response surface methodology. Advances in Bioscience and Biotechnology. 2015;6(06):419. DOI: 10.4236/abb.2015.66041.

Singh U, Gautam A, Singha TK, Tiwari A, Tiwari P, Sahai V, Sharma S. Mass production of Pleurotus eryngii mycelia under submerged culture conditions with improved minerals and vitamin D2. LWT Food Science and technology. 2020;131:109665. DOI:10.1016/J.LWT.2020.109665

Vrabl P, Schinagl CW, Artmann DJ, Heiss B, Burgstaller W. Fungal growth in batch culture-what we could benefit if we start looking closer. Frontiers in Microbiology. 2019;10:2391. DOI:10.3389/FMICB.2019.02391.