Recent Research Progress and Current Understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
Article Sidebar
Main Article Content
Abstract
Coronaviruses (CoVs) are a large group of enveloped viruses with a positive-sense RNA that have characteristic spikes projecting from their surface. CoVs are well known for their large RNA genome (26-32 kb). They primarily affect mammals and birds, causing infections of the respiratory and gastrointestinal tracts. The emergence of human CoVs (HCoVs) has been reported once every ten years for the last three decades. The most recent emergence occurred in December 2019, when a new strain of CoVs named SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic, leaving a devastating impact on the global healthcare. The early cases were associated with the Huanan seafood market in Wuhan, although the exact origin of the virus is still being debated. Phylogenetic analysis reveals bats to be the reservoir hosts, but the intermediate host responsible for spill-over into the human population remains debatable. Accumulating evidence cites pangolins based on the similarity of receptor binding domain in spike protein; however, the search for a conclusive intermediate host that aided in the inter-species crossover is still underway. Advances have been made in our understanding of the functions of each structural protein, but certain non-structural proteins and accessory proteins are yet to be characterised. Owing to the large genetic diversity of CoVs that arise through recombination, genetic variation, or gene gains/losses, future re-emergence of CoVs are most likely. In this review, we provide an introduction to CoVs and discuss the origin, virology, genetics, phylogeny, and pathogenesis of SARS-CoV-2 based on relevant literature.
Article Details
References
Song Z et al. From SARS to MERS, thrusting coronaviruses into the spotlight, Viruses. 2019;11(1), DOI: 10.3390/v11010059
Zhou P et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin, nature.com.
Petrosillo N, Viceconte G, Ergonul O, G. I.-C. M., and undefined 2020, COVID-19, SARS and MERS: are they closely related?, Elsevier.
Lau SKP et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats; 2005.
Lee N et al. A major outbreak of severe acute respiratory syndrome in Hong Kong, N. Engl. J. Med. 2003;348(20):1986– 1994. DOI: 10.1056/NEJMoa030685
Hui D. A. Z.-I. D. Clinics, and undefined, Severe acute respiratory syndrome: historical, epidemiologic, and clinical features; 2019. id.theclinics.com.
Zumla A, D. Hui D. S. P.-T. Lancet, and undefined, Middle East respiratory syndrome, Elsevier; 2015.
Eckerle I, Corman V, Müller M, … M. L.-E. infectious, and undefined. Replicative capacity of MERS coronavirus in livestock cell lines; 2014. ncbi.nlm.nih.gov.
Zhu N et al. A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 2020;382(8):727–733. DOI: 10.1056/NEJMoa2001017
Wu F et al. A new coronavirus associated with human respiratory disease in China, nature.com.
Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event, Infect. Genet. Evol. 2020;79(January):104212. DOI: 10.1016/j.meegid.2020.104212
WHO Coronavirus Disease (COVID-19) Dashboard; 2020. Available:https://covid19.who.int/ (accessed Jun. 25, 2020).
Bai et al Y. Presumed asymptomatic carrier transmission of COVID-19, jamanetwork.com.
Cui J, Li F, Z. S.-N. R. Microbiology, and undefined, Origin and evolution of pathogenic coronaviruses; 2019. nature.com.
Wan Y, Graham R, Baric R, F. L.-J. Virol., and undefined 2020, An analysis based on decade-long structural studies of SARS 3, JVI Accepted Manuscript Posted Online 29 January 2020.
Xiao K et al. Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins, bioRxiv. 2020;02(17): 951335. DOI: 10.1101/2020.02.17.951335
Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV, J. Med. Virol. 2020;92(4):433–440. DOI: 10.1002/jmv.25682
Shi J, Wen Z, Zhong G, Yang H, … C. W.-, and undefined. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2; 2020. science.sciencemag.org, DOI: 10.1126/science.abb7015
S. P.-C. and experimental pediatrics and undefined. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19); 2020. ncbi.nlm.nih.gov.
Wu A et al. Commentary genome composition and divergence of the novel coronavirus (2019-nCoV) Originating in China, Cell Host Microbe. 2020;27:325–328. DOI: 10.1016/j.chom.2020.02.001
Walls A, Park Y, Tortorici M, Wall A, A. M.- Cell, and undefined. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Elsevier; 2020.
Guo YR et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status, Military Medical Research. BioMed Central Ltd. 2020;7(1). DOI: 10.1186/s40779-020-00240-0
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis, in Coronaviruses: Methods and Protocols, Springer New York. 2015;1–23.
Ruch TR, Machamer CE. The coronavirus E protein: Assembly and beyond, Viruses. Multidisciplinary Digital Publishing Institute (MDPI). 2012;4(3):363–382. DOI: 10.3390/v4030363
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge, Virology Journal, BioMed Central Ltd. 2019;16(1). DOI: 10.1186/s12985-019-1182-0.
DeDiego ML et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis, PLoS Pathog. 2011;7(10). DOI: 10.1371/journal.ppat.1002315
Surjit M, S. L.- Infection, genetics and evolution, and undefined. The SARS-CoV nucleocapsid protein: A protein with multifarious activities, Elsevier; 2008.
Verheije MH et al. The Coronavirus Nucleocapsid Protein Is Dynamically Associated with the Replication-Transcription Complexes † Downloaded from, J. Virol. 2010;84(21):11575– 11579. DOI: 10.1128/JVI.00569-10
Ujike M, Taguchi F, Johnson M, Liu S-L. Incorporation of spike and membrane glycoproteins into Coronavirus Virions, Viruses. 2015;7:1700–1725. DOI: 10.3390/v7041700
Astuti I, Y Srafil Y. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response, Diabetes Metab. Syndr. Clin. Res. Rev. 2020;14(4): 407–412. DOI: 10.1016/j.dsx.2020.04.020
Fuk-Woo Chan J et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Taylor Fr. 2020;9(1):221–236. DOI: 10.1080/22221751.2020.1719902
Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, J. Med. Virol. 2020;92(6):584–588. DOI: 10.1002/jmv.25719
Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C. Processing of the SARS-CoV pp1a/ab nsp7-10 region, Biochem. J. 2020;477(5):1009–1019. DOI: 10.1042/BCJ20200029.
Lu R et al. Genomic characterisation and epidemiology of novel coronavirus: implications for virus origins and receptor binding, Elsevier; 2019.
Tang Q et al. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition, nature.com.
Drosten C et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N. Engl. J. Med. 2003;348(20):1967–1976. DOI: 10.1056/NEJMoa030747
Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med. 2012;367(19):1814–1820. DOI: 10.1056/NEJMoa1211721
Forni D, Cagliani R, Clerici M, M. S.-T. in microbiology, and undefined, Molecular evolution of human coronavirus genomes, Elsevier; 2017.
Ceraolo C, F. M. Giorgi FM. Genomic variance of the 2019-nCoV coronavirus, J. Med. Virol. 2020;92(5):522–528. DOI: 10.1002/jmv.25700.
Brian DA, Baric RS. Coronavirus genome structure and replication, Current Topics in Microbiology and Immunology. 2005;287:1–30. DOI: 10.1007/3-540-26765-4_1
Ferron F et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA, Natl. Acad Sci; 2017. DOI: 10.1073/pnas.1718806115
Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes, Proc. Natl. Acad. Sci. U. S. A. 2020;117(17):9241–9243. DOI: 10.1073/pnas.2004999117
TP.- Infection, genetics and evolution, and undefined 2020, Genetic diversity and evolution of SARS-CoV-2, Elsevier; 2020.
Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction, Annu. Rev. Microbiol. 2019;73(1):529–557. DOI: 10.1146/annurev-micro-020518-115759.
Zhang XW, Yap YL, Danchin A. Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus, Arch Virol. 2005;150(1):1–20. DOI: 10.1007/s00705-004-0413-9
Zhang Z, Shen L. X. G.-S. reports, and undefined, Evolutionary dynamics of MERS-CoV: potential recombination, positive selection and transmission, nature.com; 2016.
Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. Clinical medicine the COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control, mdpi.com DOI: 10.3390/jcm9041225
Shang J et al. Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. U. S. A. 2020;117(21):11727–11734. DOI: 10.1073/pnas.2003138117
Letko M, Marzi A, V. M.-N. microbiology, and undefined, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses; 2020. nature.com.
Wan Y, Shang J, Graham R, Baric R, F. L.-J. of virology, and undefined, Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus, Am Soc Microbiol; 2020.
Shang J et al. Structural basis of receptor recognition by SARS-CoV-2, Nature. 2020;581(7807):221–224. DOI: 10.1038/s41586-020-2179-y
Gui M et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding, nature.com.
Yuan Y et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains; nature.com.
Bosch J, Van Der Zee R, De Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex Downloaded from. J. Virol. 2003;77(16):8801–8811. DOI: 10.1128/JVI.77.16.8801-8811.2003
Jaimes JA, Millet JK, Whittaker GR. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site, iScience. 2020;23(6):101212. DOI: 10.1016/j.isci.2020.101212
Zhou H, Chen X, Hughes AC, Bi Y. Shi W. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein, Curr. Biol. 2020;30:2196-2203.e3. DOI: 10.1016/j.cub.2020.05.023
Hoffmann M et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell. 2020;181(2):271-280.e8. DOI: 10.1016/j.cell.2020.02.052
Baranov P, Henderson C, C. A.- Virology, and undefined, Programmed ribosomal frameshifting in decoding the SARS-CoV genome, Elsevie; 2005.
Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales, Journal of General Virology. Society for General Microbiology. 2000;81(4):853–879. Doi: 10.1099/0022-1317-81-4-853
Liu J et al. Novel Immunodominant Peptide Presentation Strategy: a Featured HLA-A*2402-Restricted Cytotoxic T-Lymphocyte Epitope Stabilized by Intrachain Hydrogen Bonds from Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein, J. Virol. 2010;84(22):11849–11857. DOI: 10.1128/jvi.01464-10
Hajeer A, Balkhy H, … S. J.-A. of thoracic, and undefined, Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection; 2016. ncbi.nlm.nih.gov.
Wang S-F et al. Human-Leukocyte Antigen Class I Cw 1502 and Class II DR 0301 Genotypes Are Associated with Resistance to Severe Acute Respiratory Syndrome (SARS) Infection. liebertpub.com. 2011;24(5):421–426. DOI: 10.1089/vim.2011.0024
De Wit E, Van Doremalen N, … D. F.-N. R., and undefined, SARS and MERS: recent insights into emerging coronaviruses; 2016. nature.com.
Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus [6], New England Journal of Medicine. 2003;349(5):508–509. DOI: 10.1056/NEJM200307313490520
Fan Y et al. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection, Springer.
Xu Z, Shi L, Wang Y, Zhang J, … L. H.-T. L. respiratory, and undefined. Pathological findings of COVID-19 associated with acute respiratory distress syndrome; 2020. thelancet.com.
Yang Y et al. Protein Cell & Protein Cell The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell. 2013;4(12):951–961. DOI: 10.1007/s13238-013-3096-8
Snijder EJ et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex, J. Virol. 2006;80(12):5927–5940. DOI: 10.1128/JVI.02501-05
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis, in Coronaviruses: Methods and Protocols, Springer New York. 2015;1282:1–23.
Ren L, Wang Y, Wu Z, Xiang ZLG-C. medical, and undefined, Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study; 2020. ncbi.nlm.nih.gov.
Snijder E, Bredenbeek P, Dobbe J, … V. T.-J. of molecular, and undefined, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, Elsevier; 2003.