Comparative Study of Airborne Pollen from the Northern to the Southern of Tunisia

Main Article Content

S. Hadj Hamda
A. Ben Dhiab
M. Msallem
A. Larbi


Aerobiology is a multidisciplinary science dealing with biological particles in the atmosphere generated by natural activities during flowering season. Airborne pollen is now the main studied biological structure which is used as a reliable tool to study plant phenology, plant distribution changes and prediction of crop production. The main aims of this work is to determine the distribution of the different spring flowering species from the North to the South of Tunisia and to establish the pollen spectrum of three regions Mornag (North), Menzel M’hiri (Centre) and Chaal (South) in 2017.

Airborne pollen data were collected using three volumetric Hirst-type spore traps placed in Mornag (36°39N; 10°16E), Menzel M’hiri (35°38N; 10°41E) and Chaal (34°34N; 10°19E) during olive flowering season. The highest pollen index was recorded in the north (Mornag, 6487.1) corresponding mainly to 18 different pollen types emitted by anemophilous species with an important presence of Cupressus pollen type having the highest contribution. Lower pollen amounts were recorded in Menzel M’hiri (5983.8) and Chaal (925.3). Olea eurpoeae was the most presented pollen type in these regions. However comparing the different study sites we can note a large distribution of some taxa from north to the south. The main common taxa were Olea europaea, Cupressaceae, Poaceae and Amaranhaceae. Their atmospheric concentrations varied also between the regions. Individual pollen index showed a sharp heterogeneity between the taxa in the same region in one hand and between the study sites in the other hand, thus a statistical analysis was performed to define the main group of taxa according to their individual pollen index. Flowering phenology of the main common taxa was also established.

Airborne pollen concentration, pollen types, meteorological parameters, taxa.

Article Details

How to Cite
Hamda, S. H., Ben Dhiab, A., Msallem, M., & Larbi, A. (2019). Comparative Study of Airborne Pollen from the Northern to the Southern of Tunisia. Asian Journal of Biology, 8(3), 1-8.
Short Research Article


D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, et al. Allergenic pollen and allergy in Europe. Allergy. 2007;62:976-990.

Fernández-Llamazares Á, Belmonte J, Delgado R, De Linares C. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). International Journal of Biometeorology. 2014;58(3):371–382.

Galán C, Alcazar P, Oteros J, Garcia-Mozo H, Aira MJ, Belmonte J, Diaz de la Guardia C, Fernandez-Gonzalez D, Gutierrez-Bustillo M, et al. Airborne pollen trends in the Iberian Peninsula. Scinece of Total Environment. 2016;55:53-59.

Sabit M, Ramos JD, Alejandro GJ, Galan, C. Seasonal distribution of airborne pollen in Manila, Philippines and effect of meteorological factors to its daily concentrations. Aerobiologia; 2015.
DOI: 10.1007/s10453-015-9414-2.

Cour P. Nouvelles techniques de détection des flux et des retombéespolliniques. Etude de la sédimentation des pollens déposés à la surface du sol. Pollen & Spores.1974;16:103-141.

Cunha M. Previsáo de colheitas em vitivultra. Integraçào de modelos aeropolinicos e bioclimáticos, teste de doutoramento.Faculadade de Ciencias da Universidade do porto, Porto-Portugal. PhD thesis, Faculty of Sciences, University of Porto, Portugal; 2002.

Msallem M, Cour P, Richard P. Prévisions des productions oléicoles par la méthodes aéropalynologiques: Étude du flux pollinique d’olivier en Tunisie et dans quelques pays du Nord de la méditerranée. Science et technique, olivae. 1996;61:53-56.

Ferreira B, Ribeiro H, Perira MS, Abreu I. Effect of ozone on Plantago lanceolata and Salix atrocinerea pollen. Aerobiologia; 2015.
DOI: 10.1007/s/0453-015-9415-1

Frenguelli G. Contribution of aerobiology to agriculture. Aerobiologia. 1998;1:95-100.

Prentice IC. Pollen representation, source area, and basin size-toward a unified theory of pollen analysis. Quat. Res. 1985; 23:76-86.

Smith M, Jager S, Berger U, Sikoparija B, Hallsdottir M, Saulienne I et al. Geographic and temporal variations in pollen exposure across Europe. Allergy. 2014;69:913-923.

Dahl A, Galán C, Hajkova L, Pailing A, Sikoparija B, Smith M, Vokou D. The onset, course and intensity of the pollen season. Review of the production. Release distribution and health Impacts. 2013;24.

Zhang Y, Bielory L, Mi Z, Cai T, Robock A, Georgopoulos P. Allergenic pollen season variations in the past two decades under changing climate in United States. Global change Biology; 2014.
DOI: org/10.111/gcb.12755

Garcia de León D, Garcia-Mozo H, Galán C, Alcázar P, Lima M, Gonzalez-Andujar JL. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change. Science of the Total Environment. 2105; 530-531:103-109.

Hirst JM. An autamatic volumetric spore-trap. Anna Appl Biol. 1952;36:257-265.

Domínguez E, Galán C, Villamandos F, Infante F. Manejo y evaluación de los datos obtenidos en los muestreos aerobiológicos. Monografías REA/EAN. 1991;1:1–18.

Nilsson S, Persson S. Tree pollen spectra in the Stockholm región (Sweden) 1973–1980. Grana. 1981;20:179-182.

Orlandi F, Ruga L, Romano B, Fornaciari M. Olive flowering as an indicator of local climatic changes. Theor Appl Climatol; 2005c;8:169176.
DOI: 10.1007/s00704-004-0120-1

Hadj Hamda S, Ben Dhiab A, Galan C, Msallem M. Pollen spectrum in northern Tunis, Tunisia. Aerobiologia; 2016.
DOI: 10.1007/s10453-016-9464-0

Rapoport HF, Hammami S, Martins P, Pérez-Priego O, Orgaz F. Influence of water deficits at different times during olive tree inflorescence and flower development. Environ Exp Bot. 2012;77:227–233.
DOI: 10.1016/j.envexpbot.2011.11.021

Garcia-Mozo H, Galán C, Oteros. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Science of the Total Environment. 2016;548-549:221-228.

Oteros J, Garcia-Mozo H, Alcazar P, Belmonte J, Bermejo D, Boi M, Carinaños P, et al. A new method for determining the sources of airborne pollen. Journal of Environmental Management. 2015;155: 212-218.

Cariñanos P, Alcàzar P, Galán C, Domı´nguez E. Environmental behaviour of airborne Amaranthaceae pollen in the Southern part of the Iberian Peninsula and its role in future climate change. Science of the Total Environment. 2014;470-471:480-487.

Fornaciari M, Galán C, Mediavilla A, Dominguez E., Romano B. Aero-palynological and phenological study in two diffrent Mediterranean olive areas Cordoba (Spain) and Perugia (Italy). Plant Biosys. 2000B;134:199-204.

Trigui A, Msallem M, Yangui A, Kcherem J. Variétés autochtones et types locaux de l’olivier. Reluire d’Art, Sfax; 2008.

Galán C, Cuevas J, Infante F, Dominguez E. Seasonal and diurnalvariation of pollenfrom Gramineae in theatmosphere of Cordoba (Spain). Allergologia et Immunipathologia. 1989;17(5):245-249.

Fernandez Rodirguez S, Adams-Growa B, Silva Palacios I, Caeiro E, Brandao R, Ferro R, et al. Comparison of Poaceae pollen counts recorded at sites in Portugal, Spain and the UK. Aerobiologia. 2015;31: 1-10.