Role of Aerosolized Coal Fly Ash in the Global Plankton Imbalance: Case of Florida's Toxic Algae Crisis

Main Article Content

Mark Whiteside
J. Marvin Herndon

Abstract

Red tide is the term used in Florida (USA) and elsewhere to describe a type of marine harmful algal bloom (HAB) that grows out of control and produces neurotoxins that adversely affect humans, birds, fish, shellfish, and marine mammals. HABs are becoming more abundant, extensive, and closer to shore, and longer in duration than any time in recorded history. Our objective is to review the effects the multifold components of aerosolized coal fly ash as they relate to the increasing occurrences of HABs. Aerosolized coal fly ash (CFA) pollutants from non-sequestered coal-fired power plant emissions and from undisclosed, although “hidden in plain sight,” tropospheric particulate geoengineering operations are inflicting irreparable damage to the world’s surface water-bodies and causing great harm to human health (including lung cancer, respiratory and neurodegenerative diseases) and environmental health (including major die-offs of insects, birds and trees). Florida’s ever-growing toxic nightmare of red tides and blue-green algae is a microcosm of similar activity globally. Atmospheric deposition of aerosol particulates, most importantly bioavailable iron, has drastically shifted the global plankton community balance in the direction of harmful algae and cyanobacterial blooms in fresh and salt water. Proposed geoengineering schemes of iron fertilization of the ocean would only make a bad situation unimaginably worse. Based on the evidence presented here, the global spread of harmful algae blooms will only be contained by rapidly reducing particulate air pollution both by implementation of universal industrial particulate-trapping and by the immediate halting of jet-sprayed particulate aerosols. Corrective actions depend not only on international cooperation, but on ending the deadly code of silence throughout government, academe, and media on the subject of ongoing tropospheric aerosol geoengineering. Long-standing weather control, climate intervention, and geoengineering operations have come to threaten not only all humans but the entire web of life on Earth.

Keywords:
Karenia brevis, aerosol particulates, harmful algal blooms, red tide, blue-green algae, coal fly ash, particulate pollution, geoengineering.

Article Details

How to Cite
Whiteside, M., & Herndon, J. (2019). Role of Aerosolized Coal Fly Ash in the Global Plankton Imbalance: Case of Florida’s Toxic Algae Crisis. Asian Journal of Biology, 8(2), 1-24. https://doi.org/10.9734/ajob/2019/v8i230056
Section
Review Article

References

Fleming LE, Kirkpatrick B, Backer LC, Walsh CJ, Nierenberg K, Clark J, et al. Review of Florida red tide and human health effects. Harmful Algae. 2011;10(2): 224-33.

Perkins S. Inner workings: Ramping up the fight against Florida’s red tides. Proceedings of the National Academy of Sciences. 2019;116(14):6510-2.

Brand LE, Compton A. Long-term increase in Karenia brevis abundance along the Southwest Florida Coast. Harmful algae. 2007;6(2):232-52.

Available:https://arctic.noaa.gov/Report-Card/Report-Card-2018/ArtMID/7878/ArticleID/789/Harmful-Algal-Blooms-in-the-Arctic Accessed May 22, 2019.

Kirkpatrick B, Fleming LE, Squicciarini D, Backer LC, Clark R, Abraham W, et al. Literature review of Florida red tide: Implications for human health effects. Harmful Algae. 2004;3(2):99-115.

Alcock F. An assessment of Florida red tide: Causes, consequences and management strategies. Marine Policy Institute, Mote Marine Laboratory, Sarasota, FL.; 2007.

Walsh JJ, Steidinger KA. Saharan dust and Florida red tides: The cyanophyte connection. Journal of Geophysical Research: Oceans. 2001;106(C6):11597-612.

Wang R, Balkanski Y, Boucher O, Bopp L, Chappell A, Ciais P, et al. Sources, transport and deposition of iron in the global atmosphere. Atmospheric Chemistry and Physics. 2015;15(11):6247-70.

Wells M, Mayer L, Guillard R. Evaluation of iron as a triggering factor for red tide blooms. Marine Ecology Progress Series. 1991:93-102.

Herndon JM. Air pollution, not greenhouse gases: The principal cause of global warming. J Geog Environ Earth Sci Intn. 2018;17(2):1-8.

Herndon JM. Science misrepresentation and the climate-science cartel. J Geog Environ Earth Sci Intn. 2018;18(2): 1-13.

Herndon JM. Fundamental climate science error: Concomitant harm to humanity and the environment J Geog Environ Earth Sci Intn. 2018;18(3):1-12.

Herndon JM. Role of atmospheric convection in global warming. J Geog Environ Earth Sci Intn. 2019;19(4):1-8.

Herndon JM, Whiteside M. Further evidence that particulate pollution is the principal cause of global warming: Humanitarian considerations. Journal of Geography, Environment and Earth Science International. 2019;21(1):1-11.

Petit J-R, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399(6735): 429.

Available:https://en.wikipedia.org/wiki/Ice_core#/media/File:Vostok_Petit_data.svg (Accessed May 22, 2019)

Available:https://commons.wikimedia.org/wiki/File:Vostok-ice-core-petit.png (Accessed May 22, 2019)

Andreae MO, Jones CD, Cox PM. Strong present-day aerosol cooling implies a hot future. Nature. 2005;435(7046):1187.

Gottschalk B. Global surface temperature trends and the effect of World War II: A parametric analysis (long version). arXiv:170306511.

Gottschalk B. Global surface temperature trends and the effect of World War II. arXiv:170309281.

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535 pp. Cambridge Univ. Press, Cambridge, UK, and New York; 2013.

Bastos A, Ciais P, Barichivich J, Bopp L, Brovkin V, Gasser T, et al. Re-evaluating the 1940s CO2 plateau. Biogeosciences. 2016;13:4877-97.

Müller J. Atmospheric residence time of carbonaceous particles and particulate PAH-compounds. Science of the Total Environment. 1984;36:339-46.

McNeill JR. Something new under the sun: An environmental history of the twentieth-century world (the global century series): WW Norton & Company; 2001.

Guttikunda SK, Jawahar P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment. 2014;92:449-60.

Xie R, Seip HM, Wibetoe G, Nori S, McLeod CW. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Science of the Total Environment. 2006;370(2-3):409-15.

Herndon JM, Whiteside M. Contamination of the biosphere with mercury: Another potential consequence of on-going climate manipulation using aerosolized coal fly ash J Geog Environ Earth Sci Intn. 2017;13(1): 1-11.

Herndon JM, Williams DD, Whiteside M. Previously unrecognized primary factors in the demise of endangered torrey pines: A microcosm of global forest die-offs. J Geog Environ Earth Sci Intn. 2018;16(4):1-14.

Herndon JM, Whiteside M. Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health. J Geog Environ Earth Sci Intn. 2017;9(1): 1-8.

Yao Z, Ji X, Sarker P, Tang J, Ge L, Xia M, et al. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews. 2015;141:105-21.

Roy WR, Thiery R, Suloway JJ. Coal fly ash: a review of the literature and proposed classification system with emphasis on environmental impacts. Environ Geology Notes #96; 1981.

Basu M, Pande M, Bhadoria PBS, Mahapatra SC. Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science. 2009;19(10):1173-86.

Fisher GL. Biomedically relevant chemical and physical properties of coal combustion products. Environ Health Persp. 1983;47: 189-99.

Pandit GG, Sahu SK, Puranik VD. Natural radionuclides from coal fired thermal power plants –estimation of atmospheric release and inhalation risk. Radioprotection. 2011;46(6):S173–S9.

Tishmack JK, Burns PE. The chemistry and mineralogy of coal and coal combustion products. Geological Society, London, Special Publications. 2004;236(1): 223-46.

World Health Organization. Ambient air pollution: A global assessment of exposure and burden of disease; 2016.

Pope A, Burnett R, Thun M, Thurston G. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287(9):1132-41.

Künzli N. The public health relevance of air pollution abatement. European Respiratory Journal. 2002;20(1):198-209.

Jeremy W. Air pollution and brain health: an emerging issue. Lancet. 2017;390: 1345-422.

Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease–evidence from epidemiological and animal studies. Biomedical Journal; 2018.

Maher BA, Ahmed IAM, Karloukovski V, MacLauren DA, Foulds PG, et al. Magnetite pollution nanoparticles in the human brain. Proc Nat Acad Sci. 2016; 113(39):10797-801.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for neurodegenerative disease. Journal of Advances in Medicine and Medical Research. 2018;25(10):1-11.

Herndon JM. Aluminum poisoning of humanity and Earth's biota by clandestine geoengineering activity: Implications for India. Curr Sci. 2015;108(12):2173-7.

Herndon JM. Obtaining evidence of coal fly ash content in weather modification (geoengineering) through analyses of post-aerosol spraying rainwater and solid substances. Ind J Sci Res and Tech. 2016;4(1):30-6.

Herndon JM. Adverse agricultural consequences of weather modification. AGRIVITA Journal of agricultural science. 2016;38(3):213-21.

Herndon JM, Whiteside M. California wildfires: Role of undisclosed atmospheric manipulation and geoengineering. J Geog Environ Earth Sci Intn. 2018;17(3):1-18.

Herndon JM, Whiteside M, Baldwin I. Fifty Years after “How to Wreck the Environment”: Anthropogenic Extinction of Life on Earth. J Geog Environ Earth Sci Intn. 2018;16(3):1-15.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for COPD and respiratory disease. Journal of Advances in Medicine and Medical Research. 2018; 26(7):1-13.

Whiteside M, Herndon JM. Coal fly ash aerosol: Risk factor for lung cancer. Journal of Advances in Medicine and Medical Research. 2018;25(4):1-10.

Whiteside M, Herndon JM. Previously unacknowledged potential factors in catastrophic bee and insect die-off arising from coal fly ash geoengineering Asian J Biol. 2018;6(4):1-13.

Whiteside M, Herndon JM. Aerosolized coal fly ash: A previously unrecognized primary factor in the catastrophic global demise of bird populations and species. Asian J Biol. 2018;6(4):1-13.

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998; 281(5374):237-40.

Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, et al. Climate-driven trends in contemporary ocean productivity. Nature. 2006;444(7120):752.

Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466(7306):591.

Vallina SM, Follows M, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. Global relationship between phytoplankton diversity and productivity in the ocean. Nature Communications. 2014;5:4299.

Wells ML, Trainer VL, Smayda TJ, Karlson BS, Trick CG, Kudela RM, et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae. 2015;49:68-93.

Tian R, Chen J, Sun X, Li D, Liu C, Weng H. Algae explosive growth mechanism enabling weather-like forecast of harmful algal blooms. Scientific Reports. 2018;8(1): 9923.

Glibert PM, Anderson DM, Gentien P, Granéli E, Sellner KG. The global, complex phenomena of harmful algal blooms; 2005.

Watson SB, Whitton BA, Higgins SN, Paerl HW, Brooks BW, Wehr JD. Harmful algal blooms. Freshwater Algae of North America: Elsevier. 2015;873-920.

Brooks BW, Lazorchak JM, Howard MD, Johnson MVV, Morton SL, Perkins DA, et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environmental Toxicology and Chemistry. 2016;35(1):6-13.

Mazard S, Penesyan A, Ostrowski M, Paulsen I, Egan S. Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Marine Drugs. 2016;14(5):97.

Paerl H, HussMann J. Blooms like it hot. Science. 2008;320.

Kaur R, Goyal D. Heavy metal accumulation from coal fly ash by cyanobacterial biofertilizers. Particulate Science and Technology. 2018;36(4): 513-6.

Chapra SC, Boehlert B, Fant C, Bierman Jr VJ, Henderson J, Mills D, et al. Climate change impacts on harmful algal blooms in US Freshwaters: A screening-level assessment. Environmental Science & Technology. 2017;51(16):8933-43.

Palmer M, Good S, Haines K, Rayner N, Stott P. A new perspective on warming of the global oceans. Geophysical Research Letters. 2009;36(20).

Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542(7641):335.

Paul VJ. Global warming and cyanobacterial harmful algal blooms. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs: Springer. 2008;239-57.

Morán XAG, López‐Urrutia Á, Calvo‐Díaz A, Li WK. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology. 2010;16(3):1137-44.

Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang Y, Litaker RW. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences. 2017;114(19):4975-80.

Moore SK, Trainer VL, Mantua NJ, Parker MS, Laws EA, Backer LC, et al., Editors. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environmental Health; BioMed Central; 2008.

Peacock MB, Kudela RM. Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnology and Oceanography. 2014;59(3):660-73.

Herndon JM, Hoisington RD, Whiteside M. Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. J Geog Environ Earth Sci Intn. 2018;14(2):1-11.

Córdoba C, Munoz J, Cachorro V, de Carcer IA, Cussó F, Jaque F. The detection of solar ultraviolet-C radiation using KCl:Eu2+ thermoluminescence dosemeters. Journal of Physics D: Applied Physics. 1997;30(21):3024.

D'Antoni H, Rothschild L, Schultz C, Burgess S, Skiles J. Extreme environments in the forests of Ushuaia, Argentina. Geophysical Research Letters. 2007;34(22).

Cabrol NA, Feister U, Häder D-P, Piazena H, Grin EA, Klein A. Record solar UV irradiance in the tropical Andes. Frontiers in Environmental Science. 2014;2(19).

Rai L, Mallick N. Algal responses to enhanced ultraviolet-B radiation. Proc. Indian Nat. Sci, Acad. Part B. 1998;64: 125-46.

Zepp RG, Callaghan TV, Erickson III DJ. Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochemical & Photobiological Sciences. 2003;2(1):51-61.

Basu S, Mackey K. Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability. 2018;10(3):869.

O'Sullivan DW, Hanson AK, Miller WL, Kester DR. Measurement of Fe (II) in surface water of the equatorial Pacific. Limnology and Oceanography. 1991;36(8): 1727-41.

Xue L, Zhang Y, Zhang T, An L, Wang X. Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria. Critical Reviews in Microbiology. 2005;31(2):79-89.

Häder D-P, Williamson CE, Wängberg S-Å, Rautio M, Rose KC, Gao K, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical & Photobiological Sciences. 2015;14(1): 108-26.

Vincent WF, Roy S. Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environmental Reviews. 1993;1(1):1-12.

Joyce S. The dead zones: oxygen-starved coastal waters. Environmental Health Perspectives. 2000;108(3):A120-A5.

Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008;321(5891): 926-9.

Altieri AH, Gedan KB. Climate change and dead zones. Global Change Biology. 2015;21(4):1395-406.

Solow AR. Red tides and dead zones: The coastal ocean is suffering from an overload of nutrients. Oceanus. 2005; 43(1):43-6.

Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359(6371): eaam7240.

Rabalais N, Diaz RJ, Levin L, Turner R, Gilbert D, Zhang J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences. 2010;7(2):585.

Weber TS, Deutsch C. Ocean nutrient ratios governed by plankton biogeography. Nature. 2010;467(7315):550.

Falkowski PG, Greene RM, Geider RJ. Physiological limitations on phytoplankton productivity in the ocean. Oceanography. 1992;5(2):84-91.

Bristow LA, Mohr W, Ahmerkamp S, Kuypers MM. Nutrients that limit growth in the ocean. Current Biology. 2017;27(11): R474-R8.

Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications. 1998;8(3):559-68.

Anderson DM, Glibert PM, Burkholder JM. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries. 2002;25(4):704-26.

Kudela R, Seeyave S, Cochlan W. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Progress in Oceanography. 2010;85(1-2):122-35.

Glibert PM, Burford MA. Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography. 2017;30(1):58-69.

Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae. 2008;8(1):3-13.

Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition. 2005;44(46):7520-40.

Kanakidou M, Myriokefalitakis S, Tsigaridis K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environmental Research Letters. 2018; 13(6):063004.

Duce R, Liss P, Merrill J, Atlas E, Buat‐Menard P, Hicks B, et al. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles. 1991;5(3):193-259.

Jickells T, Buitenhuis E, Altieri K, Baker A, Capone D, Duce R, et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochemical Cycles. 2017;31(2):289-305.

Moreno N, Querol X, Andrés JM, Stanton K, Towler M, Nugteren H, et al. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel. 2005;84:1351-63.

Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, Tao S. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience. 2015;8(1):48.

Rowe CL, Hopkins WA, Congdon JD. Ecotoxicological Implications of Aquatic Disposal of Coal Combustion Residues In the United States: A review. Environmental Monitoring and Assessment. 2002;80(3): 207-76.

Karakaş G, James A, Al-Barakati A. Prediction of fly-ash dispersion in the southern Black Sea: A preliminary modelling study. Environmental Modeling & Assessment. 2004;9(3):137-45.

Kress N, Golik A, Galil B, Krom M. Monitoring the disposal of coal fly ash at a deep water site in the eastern Mediterranean Sea. Marine Pollution Bulletin. 1993;26(8):447-56.

Ogden DE, Sleep NH. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences. 2012; 109(1):59-62.

Grasby SE, Sanei H, Beauchamp B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience. 2011;4(2): 104.

Brand U, Blamey N, Garbelli C, Griesshaber E, Posenato R, Angiolini L, et al. Methane Hydrate: Killer cause of Earth's greatest mass extinction. Palaeoworld. 2016;25(4):496-507.

Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters. 2007;256(3-4): 295-313.

Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science. 2005; 307(5710):706-9.

Stanley SM. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences. 2016;113(42): E6325-E34.

Poulton SW, Canfield DE. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements. 2011;7(2):107-12.

Suloway JJ, Roy WR, Skelly TR, Dickerson DR, Schuller RM, Griffin RA. Chemical and toxicological properties of coal fly ash. Illinois: Illinois Department of Energy and Natural Resources; 1983.

Boyd PW, Jickells T, Law C, Blain S, Boyle E, Buesseler K, et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science. 2007;315(5812):612-7.

Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, et al. Atmospheric iron deposition: global distribution, variability, and human perturbations; 2008.

Ito T, Nenes A, Johnson M, Meskhidze N, Deutsch C. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nature Geoscience. 2016;9(6):443.

Matsui H, Mahowald NM, Moteki N, Hamilton DS, Ohata S, Yoshida A, et al. Anthropogenic combustion iron as a complex climate forcer. Nature Communications. 2018;9(1):1593.

Myriokefalitakis S, Daskalakis N, Mihalopoulos N, Baker A, Nenes A, Kanakidou M. Changes in dissolved iron deposition to the oceans driven by human activity: A 3-D global modelling study. Biogeosciences. 2015;12(13):3973-92.

Meskhidze N, Chameides W, Nenes A, Chen G. Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters. 2003;30(21).

Li W, Xu L, Liu X, Zhang J, Lin Y, Yao X, et al. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances. 2017; 3(3):e1601749.

Schroth AW, Crusius J, Sholkovitz ER, Bostick BC. Iron solubility driven by speciation in dust sources to the ocean. Nature Geoscience. 2009;2(5):337.

Chen H, Laskin A, Baltrusaitis J, Gorski CA, Scherer MM, Grassian VH. Coal fly ash as a source of iron in atmospheric dust. Environmental Science & Technology. 2012;46(4):2112-20.

Weber RJ, Guo H, Russell AG, Nenes A. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience. 2016;9(4):282.

Doney SC, Mahowald N, Lima I, Feely RA, Mackenzie FT, Lamarque J-F, et al. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences. 2007;104(37):14580-5.

Sarma V, Krishna M, Paul Y, Murty V. Observed changes in ocean acidity and carbon dioxide exchange in the coastal Bay of Bengal–a link to air pollution. Tellus B: Chemical and Physical Meteorology. 2015;67(1):24638.

Okubo A, Takeda S, Obata H. Atmospheric deposition of trace metals to the western North Pacific Ocean observed at coastal station in Japan. Atmospheric Research. 2013;129:20-32.

Ullah H, Nagelkerken I, Goldenberg SU, Fordham DA. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology. 2018;16(1): e2003446.

Komonweeraket K, Cetin B, Aydilek AH, Benson CH, Edil TB. Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel. 2015;140:788-802.

Zhou L, Tan Y, Huang L, Fortin C, Campbell PG. Aluminum effects on marine phytoplankton: implications for a revised Iron Hypothesis (Iron–Aluminum Hypothesis). Biogeochemistry. 2018; 139(2):123-37.

Gillmore ML, Golding LA, Angel BM, Adams MS, Jolley DF. Toxicity of dissolved and precipitated aluminium to marine diatoms. Aquatic Toxicology. 2016;174:82-91.

Shi R, Li G, Zhou L, Liu J, Tan Y. The increasing aluminum content affects the growth, cellular chlorophyll a and oxidation stress of cyanobacteria Synechococcus sp. WH7803. Oceanological and Hydrobiological Studies. 2015;44(3):343-51.

Liao WH, Yang SC, Ho TY. Trace metal composition of size‐fractionated plankton in the Western Philippine Sea: The impact of anthropogenic aerosol deposition. Limnology and Oceanography. 2017; 62(5):2243-59.

Ho TY, Wen LS, You CF, Lee DC. The trace metal composition of size‐fractionated plankton in the South China Sea: Biotic versus abiotic sources. Limnology and Oceanography. 2007;52(5): 1776-88.

Hanikenne M. Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytologist. 2003;159(2): 331-40.

Petsas AS, Vagi MC. Effects on the Photosynthetic Activity of Algae after Exposure to Various Organic and Inorganic pollutants. Chlorophyll: IntechOpen; 2017.

Duce RA, Galloway JN, Liss PS. The impacts of atmospheric deposition to the ocean on marine ecosystems and climate. World Meteorological Organization (WMO) Bulletin. 2009;58(1):61.

Thomas W, Hollibaugh J, Seibert D, Wallace Jr G. Toxicity of a mixture of ten metals to phytoplankton. Mar Ecol Prog Ser. 1980;2(3):212-20.

Paytan A, Mackey KR, Chen Y, Lima ID, Doney SC, Mahowald N, et al. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences. 2009;106(12): 4601-5.

Huertas M, López-Maury L, Giner-Lamia J, Sánchez-Riego A, Florencio F. Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life. 2014;4(4):865-86.

Mulholland MR, Bernhardt PW, Heil CA, Bronk DA, O'Neil JM. Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnology and Oceanography. 2006; 51(4):1762-76.

Richier S, Macey AI, Pratt NJ, Honey DJ, Moore CM, Bibby TS. Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic. PLoS ONE. 2012;7(5):e35571.

Walsh JJ, Jolliff J, Darrow B, Lenes J, Milroy S, Remsen A, et al. Red tides in the Gulf of Mexico: Where, when, and why? Journal of Geophysical Research: Oceans. 2006;111(C11).

Meskhidze N, Chameides W, Nenes A. Dust and pollution: A recipe for enhanced ocean fertilization? Journal of Geophysical Research: Atmospheres. 2005;110(D3).

Singh A, Agrawal M. Acid rain and its ecological consequences. J Expt Biol. 2008;29(1):15-24.

Karydis VA, Tsimpidi AP, Bacer S, Pozzer A, Nenes A, Lelieveld J. Global impact of mineral dust on cloud droplet number concentration. Atmospheric Chemistry & Physics. 2017;17(9).

Umo N, Jones J, Baeza Romero M, Lea-Langton A, Williams A, Plane J, et al. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds; 2014.

Behra P, Sigg L. Evidence for redox cycling of iron in atmospheric water droplets. Nature. 1990;344(6265):419.

Carmichael WW, Boyer GL. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae. 2016;54:194-212.

Zhang T, He J, Luo X. Effect of Fe and EDTA on Freshwater Cyanobacteria Bloom Formation. Water. 2017;9(5):326.

Nürnberg GK, Dillon PJ. Iron budgets in temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences. 1993; 50(8):1728-37.

Molot L, Watson S, Creed I, Trick C, McCabe S, Verschoor M, et al. A novel model for cyanobacteria bloom formation: The critical role of anoxia and ferrous iron. Freshwater Biology. 2014;59(6):1323-40.

Sorichetti RJ, Creed IF, Trick CG. Iron and iron‐binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshwater Biology. 2016; 61(1):146-57.

Ahern KS, Ahern CR, Udy JW. In situ field experiment shows Lyngbya majuscula (cyanobacterium) growth stimulated by added iron, phosphorus and nitrogen. Harmful Algae. 2008;7(4):389-404.

Buesseler KO, Boyd PW. Will ocean fertilization work? Science. 2003; 300(5616):67-8.

Blaustein R. Fertilizing the Seas with Iron. BioScience. 2011;61(10):840-1.

Yoon J-E, Yoo K-C, Macdonald AM, Yoon H-I, Park K-T, Yang EJ, et al. Reviews and syntheses: Ocean iron fertilization experiments–past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project. Biogeosciences. 2018; 15(19):5847-89.

Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences. 2010;107(13):5887-92.

Allsopp M, Santillo D, Johnston P, editors. A scientific critique of oceanic iron fertilization as a climate change mitigation strategy. Symposium on Ocean Iron Fertilization; 2007.

Strong A, Chisholm S, Miller C, Cullen J. Ocean fertilization: Time to move on. Nature. 2009;461(7262):347.

Ito A. Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environmental Science & Technology Letters. 2015;2(3):70-5.

Ito A, Myriokefalitakis S, Kanakidou M, Mahowald NM, Scanza RA, Hamilton DS, et al. Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances. 2019;5(5):eaau7671.

Herndon JM. Some reflections on science and discovery. Curr Sci. 2015;108(11): 1967-8.

Häder D-P, Gao K. Interactions of anthropogenic stress factors on marine phytoplankton. Frontiers in Environmental Science. 2015;3:14.

Coelho FJ, Santos AL, Coimbra J, Almeida A, Cunha Â, Cleary DF, et al. Interactive effects of global climate change and pollution on marine microbes: The way ahead. Ecology and Evolution. 2013;3(6): 1808-18.

Louime C, Fortune J, Gervais G. Sargassum invasion of coastal environments: A growing concern. Am J Environm Sci. 2017;13(1):58-64.

Brooks MT, Coles VJ, Hood RR, Gower JF. Factors controlling the seasonal distribution of pelagic Sargassum. Marine Ecology Progress Series. 2018; 599:1-18.

Gower J, Young E, King S. Satellite images suggest a new Sargassum source region in 2011. Remote Sensing Letters. 2013;4(8):764-73.

Sedwick PN, Church TM, Bowie AR, Marsay CM, Ussher SJ, Achilles K, et al. Iron in the Sargasso Sea (Bermuda Atlantic Time‐series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications. Global Biogeochemical Cycles. 2005; 19(4).
Available:https://crsreports.congress.gov/product/pdf/R/R44871
(Accessed June 12, 2019)

Stoner NK. Working in partnership with states to address phosphorus and nitrogen pollution through use of a framework for state nutrient reductions. US Environmental Protection Agency, Memorandum; 2011.

Anderson D, editor HABs in a changing world: A perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change. Harmful algae 2012: Proceedings of the 15th International Conference on Harmful Algae: October 29-November 2, 2012, CECO, Changwon, Gyeongnam, Korea/editors, Hak Gyoon Kim, Beatriz Reguera, Gustaaf M Hallegraeff, Chang Kyu Lee, M; 2014: NIH Public Access.

Kritzberg E, Ekström S. Increasing iron concentrations in surface waters–a factor behind brownification? Biogeosciences. 2012;9(4):1465-78.

Kim TJ. Prevention of harmful algal blooms by control of growth parameters. Advances in Bioscience and Biotechnology. 2018; 9(11):613-48.

Böhm J. Electrostatic precipitators: Elsevier Amsterdam; 1982.

Hutson ND, Krzyzynska R, Srivastava RK. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Industrial & Engineering Chemistry Research. 2008; 47(16):5825-31.